Advertisement

The Problem of Falling Bodies — from Galilei to Lagrange

  • Antonio Moretto
Chapter
Part of the Archives Internationales D’Histoire Des Idées / International Archives of the History of Ideas book series (ARCH, volume 136)

Abstract

Almost all of those who have advanced the science of mechanics, and certainly Newton, Euler and Lagrange, agree in regarding Galilei’s work on the subject as fundamental — mainly on account of its having provided dynamics with a broad and solid foundation. In this particular respect, Descartes constitutes one of the very few exceptions.

Keywords

Incline Plane Rational Mechanic Uniform Motion Centripetal Force Absolute Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    The present essay was prepared under the auspices of the research project Antike in der Moderne, which was funded by the Stiftung Volkswagenwerk, Hanover, and directed by Prof. Dr Imre Toth in Regensburg, Germany.Google Scholar
  2. 2.
    Aristotle, Metaphysics, Physics, On the Heavens, On Coming-to-be; Hund, F. 1978, pp. 29-33.Google Scholar
  3. 3.
    Maier, A. 1949; Dugas, R. 1950; Dugas, R. 1954; Moody, E. 1966; Clagett, M. 1971; Wolff, M. 1978; Hund, F. 1978.Google Scholar
  4. 4.
    Galilei, G. 1933.Google Scholar
  5. 5.
    Carugo, A. 1958, pp. 779-782.Google Scholar
  6. 6.
    Clagett, M. 1971, ch. 5; Frajese, A. 1973, ch. XIII.Google Scholar
  7. 7.
    Galilei, G. 1933, pp. 202-206.Google Scholar
  8. 8.
    Hund, F. 1978, pp. 101-102.Google Scholar
  9. 9.
    Galilei, G. 1933, pp. 261-264; Hund, F. 19782, pp. 101-102; Szabó, I. 19883, pp. 490ff.Google Scholar
  10. 10.
    Toth, I. 1991.Google Scholar
  11. 11.
    Newton Horsley II, III.Google Scholar
  12. 12.
    Szabó, I. 19883, pp. 12-18.Google Scholar
  13. 13.
    Pala, A. 1965, p. 88.Google Scholar
  14. 14.
    Euler, L. 1912.Google Scholar
  15. 15.
    Euler, L. 1912, vol. I, pp. 7ff.Google Scholar
  16. 16.
    Euler, L. 1912, vol. I, pp. 20ff.Google Scholar
  17. 17.
    Euler, L. 1912, vol. I, pp. 187-189.Google Scholar
  18. 18.
    Euler, L. 1912, vol. I, p. 191.Google Scholar
  19. 19.
    Lagrange, J.L. 1881.Google Scholar
  20. 20.
    Lagrange, J.L. 1888-1889.Google Scholar
  21. 21.
    Dugas, R. 1950; Dugas, R. 1954; Elkana,Y. 1974; Hund, F. 19782; Szabó, I. 19883.Google Scholar
  22. 22.
    Lagrange, J.L. 1888-1889, pp. xi-xii.Google Scholar
  23. 23.
    Lagrange, J.L. 1888-1889, pp. 325-344.Google Scholar
  24. 24.
    Galilei, G. 1933, p. 92.Google Scholar
  25. 25.
    Euler, L. 1912, p. 20.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Antonio Moretto

There are no affiliations available

Personalised recommendations