Advertisement

Inertial and Gravitational Mass: Newton, Hegel and Modern Physics

  • Peter Martin Kluit
Chapter
Part of the Archives Internationales D’Histoire Des Idées / International Archives of the History of Ideas book series (ARCH, volume 136)

Abstract

a. The equivalence and the conceptual distinction of inertial and gravitational mass is not present in Newton’s Principia (1687). Newton discusses the properties of gravitation, and in book three, proposition six states that the quantity of matter is proportional to the weight. This proportionality is substantiated by means of a pendulum experiment.

Keywords

Gravitational Field Physical Object Modern Physic Equivalence Principle Baryon Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Hegel Encyclopedia tr. Petry.Google Scholar
  2. 2.
    Wandschneider, D. 1982 and 1986; Gieß, M. 1990; Paolucci, H. 1984.Google Scholar
  3. 3.
    For an account of Newton’s concept of mass see, for example, Kubbinga, H.H. 1988; Jammer, M. 1964.Google Scholar
  4. 4.
    Newton Principles.Google Scholar
  5. 5.
    Cohen, I.B. 1987.Google Scholar
  6. 6.
    Neuser, W. 1986 and 1990.Google Scholar
  7. 7.
    Hegel Encyclopedia § 16; tr. P.K.Google Scholar
  8. 8.
    Hegel Encyclopedia § 263–271; tr. Petry. I. 244-283; tr. Miller pp. 47-84.Google Scholar
  9. 9.
    For an interpretation of the first chapter of the mechanics the reader is referred to, for example, Wandschneider, D. 1982 and 1986; Gieß, M., 1990.Google Scholar
  10. 10.
    Hegel Encyclopedia § 262–269; tr. Petry. I. 241-263; tr. Miller pp. 44-65.Google Scholar
  11. 11.
    Hegel Encyclopedia § 263; tr. Petry. I. 244; tr. Miller p. 47.Google Scholar
  12. 12.
    Hegel Encyclopedia § 264 and Remark; tr. Petry. I. 244-245; tr. Miller pp. 47-48.Google Scholar
  13. 13.
    Hegel Encyclopedia § 265–266; tr. Petry. I. 246-253; tr. Miller pp. 49-56.Google Scholar
  14. 14.
    Hegel Encyclopedia § 266 Addition; tr. Petry. I. 248-253; tr. Miller pp. 51-56.Google Scholar
  15. 15.
    Hegel Encyclopedia § 265; tr. Petry. I. 246-248; tr. Miller pp. 49-51.Google Scholar
  16. 16.
    Hegel Encyclopedia § 266; tr. Petry. I. 249,21-22; tr. Miller p. 52.Google Scholar
  17. 17.
    Hegel Encyclopedia § 266; tr. Petry. I. 248,30-249; tr. Miller p. 51.Google Scholar
  18. 18.
    Hegel Encyclopedia § 262; tr. Petry. I. 242,18-20; tr. Miller p. 45.Google Scholar
  19. 19.
    Hegel Encyclopedia § 267; tr. Petry. I. 253,27-30; tr. Miller p. 56.Google Scholar
  20. 20.
    Hegel Encyclopedia § 264 Addition; tr. Petry. I. 246,1-2; tr. Miller p. 49.Google Scholar
  21. 21.
    Hegel Encyclopedia § 269; tr. Petry. I. 260,1-5; tr. Miller p. 62.Google Scholar
  22. 22.
    Hegel Encyclopedia § 262 and § 269 Remark; tr. Petry. I. 241; 260; tr. Miller pp. 45,62.Google Scholar
  23. 23.
    Hegel Encyclopedia § 269; tr. Petry. I. 260,24-261,5; tr. Miller p. 63.Google Scholar
  24. 24.
    For a discussion of this mistake by Hegel, see Neuser, W. 1986.Google Scholar
  25. 25.
    Hegel Encyclopedia § 269 Addition; tr. Petry. I. 262,31-34; tr. Miller p. 65.Google Scholar
  26. 26.
    Hegel Encyclopedia § 266; tr. Petry. I. 250,3-6; tr. Miller p. 53.Google Scholar
  27. 27.
    Einstein, A. 1916.Google Scholar
  28. 28.
    Fischbach, E. et al. 1986.Google Scholar
  29. 29.
    Eötvös, R.v., Pekâr, D. and Fekete, E. 1922.Google Scholar
  30. 30.
    Boynton, P.E. et al. 1987, Thieberger, P. 1987.Google Scholar
  31. 31.
    Stubbs, C.W. et al. 1987, Niebauer, T.M. et al. 1987, Adelberger, E.G. et al. 1987.Google Scholar
  32. 32.
    Ander, M.E. et al. 1988.Google Scholar
  33. 33.
    Stubbs, C.W. et al. 1989, Speak, C. and Quinn, T. 1988.Google Scholar
  34. 34.
    Stacey, F.D. et al. 1987.Google Scholar
  35. 35.
    Ander, M.E. et al. 1989.Google Scholar
  36. 36.
    Eckhardt, D.H. et al. 1988.Google Scholar
  37. 37.
    Trânh than Van, J. 1989.Google Scholar
  38. 38.
    Exceptions are, for example, Schiff, L.I. 1959 and Wigner, E.P. 1949, who give arguments for the equivalence principle based on comparing matter and anti-matter. For a refutation of these arguments, see, for example, Chardin, G. 1989.Google Scholar
  39. 39.
    Hegel Encyclopedia § 267; tr. Petry. I. 256,12-19; tr. Miller p. 60.Google Scholar
  40. 40.
    Hegel Encyclopedia § 268; tr. Petry. I. 257,15-16; tr. Miller p. 60.Google Scholar
  41. 41.
    Dijksterhuis, E.J. 1950.Google Scholar
  42. 42.
    Galilei, G. Discorsi; tr. Crew, H. and de Salvio, A. p. 107.Google Scholar
  43. 43.
    Galilei, G. Discorsi; tr. Crew, H. and de Salvio, A. p. 107.Google Scholar
  44. 44.
    Swart, H. 1985.Google Scholar
  45. 45.
    For a clear exposition of classical mechanics see, for example, Landau, L. and Lifshitz, E. 1960.Google Scholar
  46. 46.
    See for example Hill, E.L. 1951.Google Scholar
  47. 47.
    Popper, K. 1959.Google Scholar
  48. 48.
    Kluit, P.M. 1990.Google Scholar
  49. 49.
    Wandschneider, D. 1982.Google Scholar
  50. 50.
    Jammer, M. 1964.Google Scholar
  51. 51.
    Sneed.J.D. 1971.Google Scholar
  52. 52.
    Sneed, J.D. 1971.Google Scholar
  53. 53.
    Wandschneider, D. 1980.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Peter Martin Kluit

There are no affiliations available

Personalised recommendations