Skip to main content

Signal Processing for Swath Bathymetry and Concurrent Seafloor Acoustic Imaging

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 388))

Abstract

Whether they use the multibeam or sidescan geometries, swath bathymetry sonar systems aspire to provide the widest cross-track coverage with the highest spatial resolution possible. Although these two requirements are often contradictory, a fair compromise can be achieved through a combination of array design and signal processing techniques. To this end, a version of the split-aperture correlator is used in sidescan sonar systems to obtain estimates of differential phase as a function of time of arrival of seafloor echoes. These estimates are subsequently converted to sequences of angle of arrival versus time and then to bathymetry. The same technique is used in beamformed systems to detect the time of arrival of the echoes at the zero crossing of the differential phase sequence. However, this technique is unreliable in the near-specular direction and other beamformed echo detection methods working in the time domain or the spatial frequency domain are considered. FFT beamforming techniques offer some echo detection implementation advantages allowing a choice between any of the aforementioned techniques. For each ping, once signals backscatterred by the seafloor have been processed for bathymetry, the magnitudes of the returns can be positioned at their corresponding horizontal distances in an amplitude cross-track profile. Accumulation over many pings of such profiles as lines of a raster image forms a sidescanned acoustic image of the seafloor. This article reviews the signal processing issues related to these echo detection techniques, and their implication for bathymetric resolution and swath coverage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrou, D., Pantzartzis, D. and Michalopoulou, Z.H. (1991) “A hybrid sonar design for shallow water bathymetry”, Proc. IEEE Oceans’91, 1, 567–571.

    Article  Google Scholar 

  • Barnard, T.E. (1982) “Two maximum entropy beamforming algorithms for equally spaced line arrays”, IEEE Trans, Acoust. Speech Signal Proc., 30(2), 175–189.

    Article  MATH  Google Scholar 

  • Blackinton, J.G. (1986) “Bathymetric Mapping with SeaMARC II: An Elevation Angle Measuring Side-scan Sonar System,“Ph.D. dissertation, Hawaii Inst. of Geophys., Univ. of Hawaii, Manoa.

    Google Scholar 

  • Blackinton, J.G., Hussong, D.M., and Steenstrup, J. (1991) “Seafloor cable surveys: swath bathymetry from a ‘fish’”, Sea Technology, 32(7), 33–39.

    Google Scholar 

  • Burdic, W.S. (1991) Underwater acoustic system analysis, Ch. 11, 13, Prentice-Hall, Inc. 2nd Ed.

    Google Scholar 

  • Cantoni, A. and L. C. Gondara (1980) “Resolving the directions of sources on a correlated field incident on an array”, J. Acoust. Soc. Am., 67(4), 214–219.

    Article  Google Scholar 

  • Capon, J. (1969) “High resolution frequency-wavenumber spectrum analysis”, Proc. IEEE, 57, 1408–1418.

    Google Scholar 

  • Cervenka, P., de Moustier, C., and Lonsdale, P.F. (1990) “Pixel relocation in SeaMARC II sides-can sonar images based on gridded Sea Beam bathymetry”, EOS, Trans. Amer. Geophys. Union, 71(43), 1407–1408.

    Google Scholar 

  • Cloet, R.L. and Edwards, C.R. (1986) “The bathymetric swathe sounding system”, The Hydro-graphic Journal, 40, 9–17.

    Google Scholar 

  • DeFatta, D.J., Lucas, J.G. and Hodgkiss, W.S. (1988) Digital Signal Processing: A system design approach, Ch. 11, 11.A, John Wiley & Sons.

    Google Scholar 

  • Denbigh, P.N. (1989) “Swath bathymetry: Principles of operation and an analysis of errors”, IEEE J. Oceanic Eng., 14(4), 289–298.

    Article  Google Scholar 

  • Dolph, C.L. (1946) “A current distribution of broadside arrays which optimizes the relationship between beam width and side-lobe level”, Proc. Inst. Radio Eng., 34, 335–348.

    Google Scholar 

  • Elliot, R.S. (1966) The theory of antenna arrays, in Microwave scanning antennas, R.C. Hansen ed., II, 1–69.

    Google Scholar 

  • Farr, H.K. (1980) “Multibeam bathymetric sonar: Sea Beam and Hydrochart” Marine Geodesy, 4(2), 77–93.

    Article  Google Scholar 

  • Gapper, G.R. and Hollis, T. (1985) “The accuracy of an interferometric sidescan sonar”, Proc. Inst. Acoustics, 7(3), 126–133.

    Google Scholar 

  • Goddard, R.P. (1989) “The sonar simulation toolset”, Proc. IEEE-MTS Oceans’ 89, 4, 1217–1222.

    Google Scholar 

  • Hamilton, E.L. (1972) “Compressional wave attenuation in marine sediments”, Geophysics, 37, 620–646.

    Article  Google Scholar 

  • Hammerstad, E., Pohner, F., Parthiot, F., and Bennett, J. (1991) “Field testing of a new deep water multibeam echo-sounder”, Proc. IEEE Oceans’91, 2, 743–749.

    Google Scholar 

  • Harris, F.J. (1978) “On the use of windows for harmonic analysis with the Discrete Fourer Transform”, Proc. of the IEEE, 1, 51–83.

    Google Scholar 

  • Hilde, T.W.C., Carlson, R.L., Devall, P., Moore, J., Alleman, P., Sonnier, C.J., Lee, M.C., Herrick, C.N., Dwan, F., and Kue, C.W. (1991) “[TAMU] 2 — Texas A&M University Topography and Acoustic Mapping Undersea System”, Proc. IEEE Oceans’91, 2, 750–755.

    Google Scholar 

  • Jackson, D.R., Winebrenner, D.P. and Ishimaru, A. (1986) “Application of the composite roughness model to high-frequency bottom backscattering,” J. Acoust. Soc. Am., 79, 1410–1422.

    Article  Google Scholar 

  • Jäntti, T.P. (1989) “Trials and experimental results of the Echos XD multibeam echo sounder”, IEEE J. Oceanic Eng., 14(4), 306–313.

    Article  Google Scholar 

  • Jarske, P., Saramäki, T., Mitra, S.K. and Neuvo, Y. (1988) “On properties and design of nonuni-formly spaced linear arrays”, IEEE Trans. Acous. Speech Sig. Proc., 36(3), 372–380.

    Google Scholar 

  • Masnadi-Shirazi, M.A., de Moustier, C., Cervenka, P. and Zisk, S.H. (1992) “Differential phase estimation with the SeaMARC II bathymetric sidescan sonar system”, IEEE J. Oceanic Eng., 17(3), 239–251.

    Article  Google Scholar 

  • Matsumoto, H. (1990) “Characteristics of SeaMARC II Phase Data,” IEEE J. Oceanic Eng., 15(4), 350–360.

    Article  Google Scholar 

  • Morega, S.D. (1976) “Signal processing for precise ocean mapping”, IEEE J. Oceanic Eng., OE-1(2), 49–57.

    Google Scholar 

  • Morega, S.D., and Sankar, R. (1984) “Digital signal processing for precision wide-swath bathymetry”, IEEE J. Oceanic Eng., OE-9(2), 73–84.

    Google Scholar 

  • de Moustier, C., (1986), Approaches to acoustic backscattering measurements from the deep seafloor, Symposium on Current Practices and New Technology in Ocean Engineering, Am. Soc. Mech. Eng., OED 11, 137–143. (Reprinted in Trans. of the ASME, J. Energy Resources Tech., 110,77–84,1988).

    Google Scholar 

  • de Moustier, C. (1988) “State of the art in swath bathymetry survey systems,” Internat. Hyd. Rev. 65, 25–54.

    Google Scholar 

  • de Moustier, C. and Alexandrou, D. (1991) “Angular dependence of 12 kHz seafloor acoustic backscatter,” J. Acoust. Soc. Am., 90(1), 522–531.

    Article  Google Scholar 

  • de Moustier, C. and Kleinrock, M.C. (1986) “Bathymetric artifacts in Sea Beam data: How to recognize them, what causes them”, J. Geophys. Res., 91(B3), 3407–3424.

    Article  Google Scholar 

  • de Moustier, C., Lonsdale, P.F. and Shor, A.N. (1990) “Simultaneous operation of the Sea Beam multibeam echo-sounder and the SeaMARC II bathymetric sidescan sonar system,” IEEE J. Oceanic Eng., 15(2), 84–94.

    Article  Google Scholar 

  • de Moustier, C., Masnadi-Shirazi, M.A., Cervenka, P. and the Scientific Party of the Northern Ocean SeaMARC II expeditions [1989–1990] (1991) “Integrated processing for bathymetry and sidescan data in swath bathymetry sidelooking sonars”, EOS, Trans. Am. Geophys. Union, 72(44), 249–250.

    Google Scholar 

  • de Moustier, C. and Matsumoto, H. (in press) “Seafloor acoustic remote sensing with multibeam echo-sounders and bathymetric sidescan sonar systems”, Marine Geophys. Res.

    Google Scholar 

  • de Moustier, C., and Pavlicek, F.V. (1987) “On-line Sea Beam acoustic imaging”, Proc. IEEE Oceans’87, 1197–1201.

    Google Scholar 

  • Ol’shevskii, V.V. (1967) Characteristics of sea reverberation, Consultants Bureau, N.Y.

    Google Scholar 

  • Pridham, R.G., and Mucci, R.A. (1978) “A novel approach to digital beamforming”, J. Acoust. Soc. Am., 63(2), 425–434.

    Article  Google Scholar 

  • Satriano, J.H., Smith, L.C., and Ambrose J.T. (1991) “Signal processing for wide swath bathymetric sonars”, Proc. IEEE Oceans’91, 1, 558–561.

    Google Scholar 

  • Schmidt, R.O. (1981) “A signal subspace approach to multiple emitter location and spectral estimation”, PhD Dissertation, Stanford, CA.

    Google Scholar 

  • Shensa, M. and Black, C. (1978) “Passive Bearing Estimation: the Removal of Bias and 2 π Ambiguities,” J. Acoust. Soc. Amer., 63, 91–100.

    Article  Google Scholar 

  • Shor, A.N., Rognstad, M.R. and Zisk, S.H. (1992) “HAWAII MR1: a new tool for mapping in the EEZ”, Proc. PACON’92, Kona, HI.

    Google Scholar 

  • Stutzman, W.L. and Thiele G.A. (1981) Antenna theory and design, John Wiley & Sons.

    Google Scholar 

  • Steinberg, B.D. (1976) Principles of aperture and array system design, Ch. 7, John Wiley & Sons, Wiley Interscience Pub.

    Google Scholar 

  • Talukdar, K., Capell, W. and Zabounidis, C. (1992) “Side scan survey results from a multibeam sonar system — SEA BEAM 2000”, Proc. PACON’92, Kona HI.

    Google Scholar 

  • Urick, R.J. (1983) “Principles of underwater sound”, 3rd ed., McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Moustier, C. (1993). Signal Processing for Swath Bathymetry and Concurrent Seafloor Acoustic Imaging. In: Moura, J.M.F., Lourtie, I.M.G. (eds) Acoustic Signal Processing for Ocean Exploration. NATO ASI Series, vol 388. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1604-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1604-6_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4699-2

  • Online ISBN: 978-94-011-1604-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics