Skip to main content

Measurements of Turbulent Energy Dissipation Rates Applying Spectral Models

  • Chapter
Book cover Coupling Processes in the Lower and Middle Atmosphere

Part of the book series: NATO ASI Series ((ASIC,volume 387))

Abstract

A new method is introduced to obtain energy dissipation rates e from in situ measured neutral density fluctuations. The main idea is to fit a spectral model comprising both the inertial and the viscous subrange to the observed spectrum. This procedure significantly improves the reliability of the e values when compared with the structure function constant method. Application of the new method to a series of measurements performed during the DYANA campaign shows low mean energy dissipation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blix, T. A., E. V. Thrane, and O. Andreassen, In situ measurements of fine scale structure and turbulence in the mesosphere and lower thermosphere by means of electrostatic positive ion probes, J. Geophys. Res., 95, 5533–5548, 1990.

    Article  Google Scholar 

  • Chakrabarty, D. K., G. Beig, J. S. Sidhu, and S. R. Das, Fine scale structure and turbulence parameters in the equatorial middle atmosphere, J. Atmos. Terr. Phys. 51 19–27, 1989.

    Article  Google Scholar 

  • Chandra, S., Energetics and thermal structure of the middle atmosphere, Planet. Space Sci. 28 585–593,1980.

    Article  Google Scholar 

  • Chapman, S., and T. G. Cowling, The mathematical theory of non-uniform gases,, Cambridge At The University Press, Cambridge, 1970.

    Google Scholar 

  • Ebel, A., H. J. Jakobs, and P. Speth, Turbulent heating and cooling of the mesopause region and their parameterization, Ann. Geophys 1 359–370, 1983.

    Google Scholar 

  • Fleming, E. L., S. Chandra, J. J. Barnett, and M. Corney, Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude, Adv. Space Rea. 10 No. 12 11–59, 1990.

    Article  Google Scholar 

  • Hill, R. J., Models of the scalar spectrum for turbulent advection, J. Fluid Mech. 88 541–562, 1978.

    Article  Google Scholar 

  • Hillert, W., F.-J. Lübken, and G. Lehmacher, Neutral air turbulence during DYANA as measured by the TOTAL instrument, J. Atmos. Terr. Phys.,submitted 1992.

    Google Scholar 

  • Lübken, F.-J., On the extraction of turbulent parameters from atmospheric density fluctuations, J. Geophys. Res., (accepted) 1992b.

    Google Scholar 

  • Lübken, F.-J., U. von Zahn, E. V. Thrane, T. Blix, G. A. Kolin, and S. V. Pachomov, In situ measurements of turbulent energy dissipation rates and eddy diffusion coefficients during MAP/WINE, J. Atmos. Terr. Phys., 49 763–775, 1987.

    Article  Google Scholar 

  • Lübken, F.-J., W. Hillert, G. Lehmacher, and U. von Zahn, Neutral air turbulence during DYANA: first results, Adv. Space Res. 12 (10)135-(10)139, 1992a.

    Article  Google Scholar 

  • Lübken, F.-J., W. Hillert, G. Lehmacher, U. von Zahn, T. Blix, E. Thrane, H.-U. Widdel, G. A. Kokin, A. K. Knyazev, and A. Hauchecorne, Morphology and sources of turbulence in the mesosphere during DYANA, J. Atmos. Terr. Phys., (submitted) 1992c.

    Google Scholar 

  • Lübken, F.-J., W. Hillert, G. Lehmacher, U. von Zahn,, M. Bitnner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, and P. Czechowsky, Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes and radiosondes during the DYANA campaign, J. Atmos. Terr. Phys., (submitted) 1992d.

    Google Scholar 

  • Offermann, D., DYANA project survey, Proceedings of the 10th ESA Symposium on European Rocket and Balloon Programmes and Related Research,Cannes-Mandelieu,France (ESA SP-317), 317 369–386, 1991.

    Google Scholar 

  • Tatarskii, V. I., The effects of the turbulent atmosphere on wave propagationIsrael Program for Scientific Translations, Jerusalem, 1971.

    Google Scholar 

  • Watkins, B. J., C. R. Philbrick, and B. B. Balsley, Turbulence energy dissipation rates and inner scale sizes from rocket and radar data, J. Geophys. Res. 93 7009–7014, 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lübken, FJ., Hillert, W. (1993). Measurements of Turbulent Energy Dissipation Rates Applying Spectral Models. In: Thrane, E.V., Blix, T.A., Fritts, D.C. (eds) Coupling Processes in the Lower and Middle Atmosphere. NATO ASI Series, vol 387. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1594-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1594-0_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4694-7

  • Online ISBN: 978-94-011-1594-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics