Advertisement

Laminated electrochromic displays and windows

  • Bruno Scrosati
Chapter

Abstract

Electrochromism is the phenomenon related to changes in colour induced in selected materials by reversible electrochemical processes. More precisely, electrochromism can be defined as a persistent but reversible optical change produced electrochemically. Electrochromism and related principles have been treated in many extensive and exhaustive review papers [1, 2, 3, 4, 5, 6, 7] to which the reader is referred for details. In this chapter attention will be mainly focused on the applications of electrochromism and in particular on polymer-based electrochromic devices. In fact, the phenomenon of electrochromism, namely of light modulation controlled by an external electric pulse, can be exploited for the realization of devices of diversified interest. For instance, electrochromic devices are today considered suitable for technologically important goals such as optical information displays, architectural glazing windows for energy control, anti-glare rear-view mirrors and sun roofs for automobiles and consumer sunglasses.

Keywords

Cyclic Voltammetry Polymer Electrolyte Nickel Oxide Tungsten Oxide Vanadium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faughnan, B.W. and Crandall, R.S. (1980) ‘Display devices’ In Topics for Advanced Physics (Ed. J.I. Pankove), Springer, Berlin, 40, 181.Google Scholar
  2. 2.
    Dautremont-Smith, W.C. (1982) Displays, January, 3 April, 67.Google Scholar
  3. 3.
    Scrosati, B. (1982) (Ed) Electrochromism and Electrochromic Display, Seminar at the University of Rome.Google Scholar
  4. 4.
    Green, M, and Kang, K. (1988) Displays (October 1988), 166.Google Scholar
  5. 5.
    Scrosati, B. (1989) Chim. Oggi, 7, 41.Google Scholar
  6. 6.
    Dannadiu, A. (1989) Mater. Science and Eng, B3, 185.CrossRefGoogle Scholar
  7. 7.
    Baucke, F.G.K., (1991) Mater. Science and Eng., B10, 285.CrossRefGoogle Scholar
  8. 8.
    Green, M., Dautremont-Smith, W.C. and Weiner, J.A. (1976) Thin Solid Films, 38, 89.CrossRefGoogle Scholar
  9. 9.
    Lampert, C.M. (1982) Solar Energy Mater. 1.Google Scholar
  10. 10.
    Hamberg, I. and Granqvist, G.C. (1986) J. Appl. Phys., 60(11) R123.CrossRefGoogle Scholar
  11. 11.
    Ganson, G. and Hartmann, R. (1992) Lecture Notes presented at International School on Materials Science and Technology — Solid State Ionics for Sensors and Electrochromics, Erice, Sicily, Italy, July 1–12, 1992.Google Scholar
  12. 12.
    Nabavi, M., Doeuff, S., Sanchez, C. and Livage, J. (1989) Mater. Science and Eng. B3, 203.CrossRefGoogle Scholar
  13. 13.
    Whittingham, M.S. (1970) Progress Solid State Chem, 12, 41.CrossRefGoogle Scholar
  14. 14.
    Cogan, S.F., Plante, T.D., Parker, M.A. and Rauh, D. (1986) Solar Energy Mater., 14, 185.CrossRefGoogle Scholar
  15. 15.
    Bange, K. and Gambke, T. (1990) Adv. Mater, 3, 10.CrossRefGoogle Scholar
  16. 16.
    Gomes, M.A.B., de S. Bulhoes, L.O., de Castro, S.C. and Damiao, A.J. (1990) J. Electrochem. Soc., 137, 3067.CrossRefGoogle Scholar
  17. 17.
    Gottfield, G., McIntyre, J.D.E., Ben, G. and Shay, J.L. (1978) Appl. Phys. Lett., 33, 208;CrossRefGoogle Scholar
  18. Schiavone, L.M., Dautremont-Smith, W.C., Beni, G. and Shay, J.L. (1981) J. Electrochem. Soc., 128, 1339.CrossRefGoogle Scholar
  19. 18.
    Beni, G. 159th Meeting Electrochem. Soc., Minneapolis, MN, USA, May 1981; Abstr. No. 154.Google Scholar
  20. 19.
    Fantini, M. and Gorenstein, A. (1987) Solar Energy Mater., 16, 487.CrossRefGoogle Scholar
  21. 20.
    Stevensson, J.S.E.M. and Granqvist, C.G. (1986) Appl. Phys. Lett., 49 (23) 1566.CrossRefGoogle Scholar
  22. 21.
    Gorenstein, A., Decker, F., Estrada, W. et al. (1990) J. Electroanal. Chem., 211, 277.Google Scholar
  23. 22.
    Passerini, S., Scrosati, B. and Gorenstein, A. (1990) J. Electrochem. Soc., 137, 3297.CrossRefGoogle Scholar
  24. 23.
    Pileggi, R., Scrosati, B. and Passerini, S. (1991) In Solid State Ionics II Material Research Society (eds D.F. Shriver, R.A. Huggins and M. Balkanski), 210, 249.Google Scholar
  25. 24.
    Decker, F., Passerini, S., Pilleggi, R. and Scrosati, B (1992) Electrochim. Acta, 37, 1033.CrossRefGoogle Scholar
  26. 25.
    Decker, F., Passerini, S., Pilleggi, R. and Scrosati, B. (1991) J. Electrochem. Soc., 138, 3182.CrossRefGoogle Scholar
  27. 26.
    Passerini, S. and Scrosati, B. (1992) Solid State Ionics, 55–56, 520.Google Scholar
  28. 27.
    Andersson, A.M., Estrada, W., Granqvist, G.C. et al. (1990) Proc. SPIE 12–72, 96.Google Scholar
  29. 28.
    Gottesfeld, S. (1980) J. Electrochem. Soc., 127, 272.CrossRefGoogle Scholar
  30. 29.
    Pantaloni, S., Passerini, S. and Scrosati, B. (1987) J. Electrochem. Soc., 134, 753.CrossRefGoogle Scholar
  31. 30.
    MacCallum, J.R. and Vincent, C.V. (eds) (1987) Polymer Electrolyte Review Elsevier Applied Sci., London.Google Scholar
  32. 31.
    Armand, M., Deroo, D. and Pedone, D. (1988) In Solid State Ionic Devices (eds B.V.R. Chowdari and S. Radhakrishna), World Sci. Pub., Singapore, p. 515.Google Scholar
  33. 32.
    Bohnke, O. and Bohnke, C. (1989) Fall Meeting Electrochem. Soc., Hollywood, Fla, Oct. 15–20, abstr. No. 626.Google Scholar
  34. 33.
    Randin, J.P. (1982) J. Electrochem. Soc., 129, 1215.CrossRefGoogle Scholar
  35. 34.
    Akhtar, M. and Weakliem, H.A. (1989) Fall Meeting Electrochem, Soc., Hollywood, Fla, Oct. 15–20, abstr. No. 624.Google Scholar
  36. 35.
    Granqvist, C.G. (1988) In Solar Optical Materials (Ed. M.G. Hutchins), Pergamon, Oxford, p. 59.Google Scholar
  37. 36.
    Lampert, C.M. Lecture Notes, International School on Materials Science and Technology, Solid State Ionics for Sensors and Electrochromics, Erice, Sicily, Italy, July 1–12, 1992.Google Scholar
  38. 37.
    Rauh, D., Cogan, S.F. and Parker, M. (1984) Optical Material Technology for Energy Efficient and Solar Energy Conversion, III, SPIE 502, 38.Google Scholar
  39. 38.
    Svensson, J.S.E.M. and Granqvist, G.C. (1984) Solar Energy Mater., 11, 29.CrossRefGoogle Scholar
  40. 39.
    Granqvist, C.G. (1991) In Energy Efficient Windows: Present and Forthcoming Technology, from ‘Materials Science for Solar Energy Conversion Systems’, (Ed. C.G. Granqvist), Pergamon Press, p. 106.Google Scholar
  41. 40.
    Andersson, A.M., Granqvist, G.C. and Stevens, J.R. (1990) Large-area Chromogenics: Materials and Devices for Transmittance Control, IS4 SPIE 471.Google Scholar
  42. 41.
    Andersson, A.M., Estrada, W., Granqvist, G.C. et al. (1990) Optical Material Technology for Energy Efficient and Solar Energy Conversion, IX, SPIE 1272, 96.Google Scholar
  43. 42.
    Cogan, S.F., Plante, T.D., McFadden, R.S. and Rauh, R.D. (1986) Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology, SPIE, 692, 32.Google Scholar
  44. 43.
    Rauh, R.D. and Cogan, S.F. (1988) Solid State Ionics, 28 and 30, 1707.Google Scholar
  45. 44.
    Goldner, R.B., Seward, G.E., Wong, K. et al. (1989) Solar Energy Mater., 19, 17.CrossRefGoogle Scholar
  46. 45.
    Cogan, S.F., Anderson, E.J., Plante, T.D. and Rauh, R.D. (1985) Optical Material Technology for Energy Efficient and Solar Energy Conversion, IV, SPIE 562, 23.Google Scholar
  47. 46.
    Wei, G., Haas, T.E. and Goldner, R.B. (1989) Fall Meeting Electrochem. Soc., Hollywood, Fla., Oct. 15–20 (1989) abstr. No. 612.Google Scholar
  48. 47.
    Andersson, A.M., Granqvist, C.G. and Stevens, J.R. (1988) Proc. SPIE 1016, 41.Google Scholar
  49. 48.
    Rauh, R.D., Cogan, S.F., Westwood, J.D., Nguyen, N.M. and Plante, T.D. (1989) Fall Meeting Electrochem. Soc., Hollywood, Fla., Oct. 15–20 (1989) abstr. No. 618.Google Scholar
  50. 49.
    Andersson, A.M., Granvist, C.G. and Stevens, J.R. (1989) Appl. Opt., 28 (15) 3295.CrossRefGoogle Scholar
  51. 50.
    Deroo, D. (1990) Second Intl. Symp. Polymer Electrolytes (Ed. B. Scrosati) Elsevier Applied Science, London, p. 443.Google Scholar
  52. 51.
    Shizuishi, M., Shimizu, I.D. and Inoue, E. Japan. J. Appl Phys., 20, 575.Google Scholar
  53. 52.
    Baudry, P., Rodrigues, A.C.M., Aegerter, M.A. and Bulhoes, L.O. (1989) Proc. 5th Workshop on Glasses and Ceramics from Gels, Rio de Janeiro, Aug. 6–10, 1989.Google Scholar
  54. 53.
    Kuwabara, K., Ichikawa, S. and Sugiyama, K. (1987) J. Mater. Science, 22, 44.CrossRefGoogle Scholar
  55. 54.
    Passerini, S., Pileggi, R. and Scrosati, B. (1992) Electrochim. Acta, 37, 1703.CrossRefGoogle Scholar
  56. 55.
    Passerini, S., Scrosati, B., Gorenstein, A. et al. (1989) J. Electrochem. Soc., 136, 3394.CrossRefGoogle Scholar
  57. 56.
    Honda, K., Fujita, M., Ishida, H., Yamamoto, R. and Ohgaki, K. (1988) J. Electrochem. Soc., 135, 3151.CrossRefGoogle Scholar
  58. 57.
    Andersson, A.M., Granqvist, C.G. and Stevens, J.R. (1989) Appl. Opt., 28, 3295.CrossRefGoogle Scholar
  59. 58.
    Wixwat, W., Stevens, J.R., Andersson, A.M. and Granqvist, G.C. (1990) In Second Intl. Symp. Polymer Electrolytes (Ed. B. Scrosati) Elsevier Applied Science, London, p. 461.Google Scholar
  60. 59.
    Mani, T. and Stevens, J.R. (1992) Polymer, 33, 834.CrossRefGoogle Scholar
  61. 60.
    Baudry, P. and Deroo, D. (1989), Fall Meeting Electrochem. Soc., Hollywood, Fla., Oct. 15–20 (1989) abstr. No. 627.Google Scholar
  62. 61.
    Baudry, P., Aegerter, A., Deroo, D., Valla, B., personal communication.Google Scholar
  63. 62.
    Armand, M., Gorech, W. and Andreani, R. (1990) Second Intl. Symp. Polymer Electrolytes (Ed. B. Scrosati), Elsevier Applied Science, London, p. 461.Google Scholar
  64. 63.
    Doeff, M.A., Lampert, C.M., Visco, S.J. and Ma, Y.P. (1992) Proc SPIE, 1727, in press.Google Scholar
  65. 64.
    Kobayashi, N., (1988) Ph.D. Thesis, Waseda University, Japan.Google Scholar
  66. 65.
    Tada, H., Bito, Y., Fujino, K. and Kawahara, H. (1987) Solar Energy Mater., 16, 509.CrossRefGoogle Scholar
  67. 66.
    Rousselot, C., Gillet, P.A. and Bohnke, O. (1991) Thin Solid Films, 204, 123.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Bruno Scrosati

There are no affiliations available

Personalised recommendations