Advertisement

Solvation mechanisms in low molecular weight polyethers

  • Michael Mendolia
  • H. Cai
  • Gregory C. Farrington
Chapter

Abstract

Since the proposal by Armand [1] that high molecular weight polyethers containing dissolved ions could be used as solid polymeric electrolytes (SPEs), there has been considerable research dedicated to the pragmatic issues of improving the ionic conductivities of these systems and of developing polymer-based high energy density rechargeable batteries. Macro-molecular solvents, while solid in the bulk state, have almost liquid-like mobility on the microscopic scale. This unique quality makes these systems an extremely interesting branch of electrochemical materials which cannot be fully understood in terms of more classical models either of conventional low molecular weight liquid electrolytes or of the well-known crystalline ionic conductors (e.g. the β-alumina family). Exploring the more fundamental aspects of these systems is important in its own right, but should also serve to clarify the mechanism of ionic conductivity and lead to the selection of more suitable battery materials.

Keywords

Polymer Electrolyte High Salt Concentration Transition Band Solid Polymeric Electrolyte Solvation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armand, M.B., Chabagno, J.M. and Duclot, M.J. (1979) In Fast Ion Transport in Solids (eds Vashista, Mundy and Shenoy), North Holland, New York, p. 131.Google Scholar
  2. 2.
    Watanabe, M. and Ogata, N. (1988) Brit. Polym. J., 20, 181.CrossRefGoogle Scholar
  3. 3.
    Vincent, C. (1987) Progr. Soi St. Chem., 17, 145.CrossRefGoogle Scholar
  4. 4.
    See General Discussion, in Faraday Disc. of the Chem. Soc., 88, (1989), 87.Google Scholar
  5. 5.
    Cowie, J. (1991) Oral presentation at the 3rd International Symposium on Polymer Electrolytes, Annecy, France, June 1991.Google Scholar
  6. 6.
    Gauthier, M., Belanger, A., Kapfer, B. et al. (1989) In Polymer Electrolyte Reviews—2, (eds MacCallum and Vincent), Elsevier, New York, 285.Google Scholar
  7. 7.
    Huq, R. and Farrington, G.C. (1988) J. Electrochem. Soc., 135(2), 524.CrossRefGoogle Scholar
  8. 8.
    Huq, R. and Farrington, G.C. (1988) Solid State Ionics, 28–30, 990.CrossRefGoogle Scholar
  9. 9.
    Farrington, G.C. and Linford, P. (1989) In Polymer Electrolyte Reviews—2 (eds MacCallum and Vincent), Elsevier, New York, 255.Google Scholar
  10. 10.
    Huq, R., Saltzberg, M. and Farrington, G.C. (1989) J. Electrochem. Soc., 136(5), 1260.CrossRefGoogle Scholar
  11. 11.
    Latham, R., Linford, R. and Schiindwein, W. (1989) Faraday Disc, of the Chem. Soc., 88, 103.CrossRefGoogle Scholar
  12. 12.
    Martins, M. and Sequeira, C. (1990) J. Power Sources, 32, 107.CrossRefGoogle Scholar
  13. 13.
    Balasubramanian, D. and Chandani, B. (1983) J. Chem. Ed., 60(1), 77.CrossRefGoogle Scholar
  14. 14.
    Yanagida, S., Takahashi, K. and Okahara, M. (1977) Bull. Chem. Soc. Jap., 50(6), 1386.CrossRefGoogle Scholar
  15. 15.
    Born, M. (1920) Z. Physik, 1, 45.CrossRefGoogle Scholar
  16. 16.
    Hughes, E.D., Ingold, C.K., Patai, S. and Pocker, Y. (1957) J. Chem. Soc., 1206.Google Scholar
  17. 17.
    Pettit, L. and Bruckenstein, S. (1966) J. Am. Chem. Soc., 88(21), 4783.CrossRefGoogle Scholar
  18. 18.
    Popovych, O. and Tomkins, R. (1981) Nonaqueous Solution Chemistry, Wiley, New York.Google Scholar
  19. 19.
    Gutmann, V. (1972) Fortschr. Chem. Forsch., 27, 59.CrossRefGoogle Scholar
  20. 20.
    Katzin, L. and Gerbert, E. (1950) J. Am. Chem. Soc., 72, 5455.CrossRefGoogle Scholar
  21. 21.
    Katzin, L. (1957) J. Inorg. Nucl. Chem., 4, 187.CrossRefGoogle Scholar
  22. 22.
    Katzin, L. (1962) J. Chem. Phys., 36(11), 3034.CrossRefGoogle Scholar
  23. 23.
    Katzin, L. (1966) Transition Metal Chemistry, 3, 56.Google Scholar
  24. 24.
    Jorgensen, C. (1963) Inorganic Complexes, Academic, New York.Google Scholar
  25. 25.
    Werner, A. (1893) Z. Anorg. Chem., 3, 267.CrossRefGoogle Scholar
  26. 26.
    Werner, A. (1905) Neuere Anschauungen auf dem Gebiete der anorganischen Chemie, Vieweg, Braunschweig.Google Scholar
  27. 27.
    Cotton, F. and Wilkinson, G. (1988) Advanced Inorganic Chemistry, 5th edn, Wiley, New York.Google Scholar
  28. 28.
    Busch, D. and Stephenson, N. (1990) Coordination Chemistry Reviews, 100, 119.CrossRefGoogle Scholar
  29. 29.
    Cotton, F. (1990) Chemical Applications of Group Theory, 3rd edn, Wiley, New York.Google Scholar
  30. 30.
    Greenwood, N. and Earnshaw, A. (1984) Chemistry of the Elements, Pergamon, New York.Google Scholar
  31. 31.
    Ballhausen, C. (1962) Introduction to Ligand Field Theory McGraw-Hill, New York.Google Scholar
  32. 32.
    Lever, A. (1968) Inorganic Electronic Spectroscopy, Elsevier, New York.Google Scholar
  33. 33.
    Groh, V. (1925) Z. Anorg. Chem. 146, 305.CrossRefGoogle Scholar
  34. 34.
    Fine, D. (1962) J. Am. Chem. Soc., 84, 1139.CrossRefGoogle Scholar
  35. 35.
    Trutia, A. and Musa, M. (1966) Revue Roumaine de Chimie, 11, 927.Google Scholar
  36. 36.
    Ishihara, I., Hara, K. and Osugi, J. (1974) Rev. Phys. Chem. Jap., 44(1), 11.Google Scholar
  37. 37.
    Ishihara, I. (1978) Rev. Phys. Chem. Jap., 48(1), 27.Google Scholar
  38. 38.
    Gryzybkowski, W. and Pilarczyk, M. (1990) Electrochim. Acta, 35(2), 351.CrossRefGoogle Scholar
  39. 39.
    Pilarczyk, M., Gryzybkowski, W. and Klinzpron, L. (1990) Polyhedron, 9(11), 1375.CrossRefGoogle Scholar
  40. 40.
    Antonelli, M., Ceipidor, U., Bucci, R. and Carunchio, V. (1980) Inorganica Chimica, 45, LI73.Google Scholar
  41. 41.
    Buffagni, S. and Dunn, T. (1961) J. Chem. Soc., 5105.Google Scholar
  42. 42.
    Suzuki, H., Ishiguro, S. and Ohtaki, H. (1990) J. Chem. Soc. Far. Trans., 86(12), 2179.CrossRefGoogle Scholar
  43. 43.
    Mendolia, M. and Farrington, G.C. (1992) Electrochim. Acta, 37(9), 1695.CrossRefGoogle Scholar
  44. 44.
    Mendolia, M., Farrington, G.C. and Lindgren, J., unpublished results.Google Scholar
  45. 45.
    Mendolia, M. and Farrington, G.C., unpublished results.Google Scholar
  46. 46.
    Nicholls, D. (1973) Comprehensive Inorganic Chemistry, Pergamon Press, Oxford.Google Scholar
  47. 47.
    Jaffe, H.H. and Orchin, M. (1962) Theory and Applications of Ultraviolet Spectroscopy, John Wiley and Sons, Inc., New York.Google Scholar
  48. 48.
    Griffiths, T.R. and Scarrow, R.K. (1969) Trans. Fara. Soc., 65, 3179.CrossRefGoogle Scholar
  49. 49.
    Fine, D.A. (1965) Inorg. Chem, 4, 345.CrossRefGoogle Scholar
  50. 50.
    Shchukarev, S.A. and Lobaneva, O.A. (1955) Dokl. Akcol. Nauk. SSSR, 105, 741.Google Scholar
  51. 51.
    Sramko, R. (1963) Chem. Zvesti, 17, 725.Google Scholar
  52. 52.
    Goodgame, D.M.L., Goodgame, M. and Cotton, F.A. (1961) J. Am. Chem. Soc., 83, 4161.CrossRefGoogle Scholar
  53. 53.
    Griffiths, T.R. and Scarrow, R.K. (1969) Trans. Fara. Soc., 65, 2567.CrossRefGoogle Scholar
  54. 54.
    Angell, C.A. and Gruen, D.M. (1966) J. Am. Chem. Soc., 88, 5192.CrossRefGoogle Scholar
  55. 55.
    Ludi, A. and Feitknecht, W. (1963) Helv. Chim. Acta, 46, 2226.CrossRefGoogle Scholar
  56. 56.
    Knetsch, D. and Groeneveld, W.L. (1973) Inorg. Chim. Acta, 7, 81.CrossRefGoogle Scholar
  57. 57.
    Furlani, C. and Morpurgo, J. (1961) Z. Physik Chem, 28, 93.CrossRefGoogle Scholar
  58. 58.
    Fine, D.A. (1966) Inorg. Chem, 5, 197.CrossRefGoogle Scholar
  59. 59.
    Griffiths, T.R. and Scarrow, R.K. (1969) Trans. Fara. Soc., 65, 1727.CrossRefGoogle Scholar
  60. 60.
    Griffiths, T.R. and Scarrow, R.K. (1969) Trans. Fara. Soc., 65, 1427.CrossRefGoogle Scholar
  61. 61.
    Mark, J.E. and Flory, P.J. (1965) J. Am. Chem. Soc., 87, 1415.CrossRefGoogle Scholar
  62. 62.
    Cai, H. and Farrington, G.C., submitted for publication.Google Scholar
  63. 63.
    Walden, (1906) Z. Electrochem., 12, 77.CrossRefGoogle Scholar
  64. 64.
    Walden, (1906) Z. Phys. Chem, 55, 207.Google Scholar
  65. 65.
    Mendolia, M. and Farrington, G.C. (1993) Chem. Mater., in press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Michael Mendolia
  • H. Cai
  • Gregory C. Farrington

There are no affiliations available

Personalised recommendations