Skip to main content
  • 1176 Accesses

Abstract

Nitrogen (N) is one of the most abundant elements in plants, and constitutes 0.5–5% of the plant dry weight (8-10% in the case of microalgae). The atmosphere contains almost 80% nitrogen in the form of dinitrogen gas (N2). Only certain prokaryotic organisms are able to utilise this N2 by a process called biological nitrogen fixation - amounting to about 108 tonnes of N2-N per year. In the case of legumes and some other higher plants, nitrogen-fixing bacteria are contained in nodules in the roots. A large number of other symbiotic associations also exist. The N2 is fixed into ammonia which can be assimilated and metabolised (Fig. 19.1; Chapter 20). Biological nitrogen fixation was first reported in 1888, and since then this process has attracted a lot of interest in both its basic and applied aspects. The first part of this chapter will introduce the process of biological nitrogen fixation, the requirements, and its basic physiology and biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References (Nitrate Reduction)

  1. Guerrero, M.G., J.M. Vega and M. Losada (1981) The Assimilatory nitrate-reducing system and its regulation. Ann. Rev. Plant Physiol. 32, 169–202.

    Article  CAS  Google Scholar 

  2. Solomonson, L.P. and Barber, M.J. (1990) Assimilatory nitrate reductase: functional properties and regulation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41, 225–253.

    Article  CAS  Google Scholar 

  3. Wray, J.L. and Fido, J. (1990) Nitrate reductase and nitrite reductase. In: Methods in Plant Biochemistry, Vol. 3, Enzymes of Primary Metabolism (P.J. Lea, ed.) Academic Press, London. pp. 241–256.

    Google Scholar 

  4. Guerrero, M.G. and Lara, C. (1987) Assimilation of inorganic nitrogen. In: The Cyanobacteria (P. Fay and C. Van Baalen, eds.) Elsevier, Amsterdam. pp. 163–186.

    Google Scholar 

  5. Lara, C. and Guerrero, M.G. (1989) The photosynthetic assimilation of nitrate and its interactions with CO2 fixation. In: Techniques and New Developments in Photosynthesis Research (J. Barber and R. Malkin, eds.). Plenum, London.

    Google Scholar 

  6. Snell, F.D. and C.T. Snell (1949) Colorimetric Methods of Analysis Van Nostrand, New York. p. 804.

    Google Scholar 

  7. Scott, D.B. and C.A. Neyra (1979) Glutamine synthetase and nitrate assimilation in sorghum (Sorghum vulgare) leaves. Canadian J. Bot. 57, 754–758.

    Article  CAS  Google Scholar 

  8. Hipkin, C.R. and P.J. Syrett (1977) Nitrate reduction by whole cells of Ankistrodesmus braunii and Chlamydomonas reinhardii. New Phytol. 79, 639–648.

    Article  CAS  Google Scholar 

  9. Syrett, P.J. and E.M. Thomas (1973) The assay of nitrate reductase in whole cells of Chlorella: strain differences and the effect of cell walls. New Phytol. 72, 1307–1310.

    Article  CAS  Google Scholar 

  10. Herrero, A., E. Flores and M.G. Guerrero (1981) Regulation of nitrate reductase level in the cyanobacteria Anacystis nidulans, Anabaena sp. strain 7119, and Nostoc sp. strain 6719. J. Bacteriol. 145, 175–180.

    PubMed  CAS  Google Scholar 

  11. Herrero, A., and M.G. Guerrero (1986) Regulation of nitrite reductase in the cyanobacterium Anacystis nidulans. J. Gen. Microbiol. 132, 2463–2468.

    CAS  Google Scholar 

  12. Hageman, R.H. and A.J. Reed (1980) Nitrate reductase from higher plants. Methods Enzymol. 89, 270–280.

    Article  Google Scholar 

  13. Vega, J.M., J. Cárdenas and M. Losada (1980) Ferredoxin-nitrite reductase. Methods Enzymol. 69, 255–270.

    Article  CAS  Google Scholar 

  14. Thayer, J.R. and R.C. Huffaker (1980) Determination of nitrate and nitrite by high-pressure liquid chromatography: comparison with other methods for nitrate determination. Analyt. Biochem. 102, 110–119.

    Article  PubMed  CAS  Google Scholar 

  15. Corbin, J.L. (1984) Liquid chromatographic-fluorescence determination of ammonia from nitrogenase reaction: a 2 minute assay. Applied Environmental Microbiology 47, 1027–1030.

    CAS  Google Scholar 

  16. Cawse, P.A. (1967) The determination of nitrate in soil solutions by ultra-violet spectroscopy. Analyst 92, 311–315.

    Article  CAS  Google Scholar 

  17. Solorzano, L. (1969) Determination of ammonium in natural waters by the phenol-hypochlorite methods. Limnology and Oceanography 14, 799–801

    Article  CAS  Google Scholar 

  18. Bergmeyer, H.U. (1974) Methoden der Enzymatischen Analyse, 2nd edn. Verlag Chemie, Weinheim.

    Google Scholar 

Further Reading(Nitrogen Fixation)

  • Burris, R.H. (1991) Nitrogenases. J. Biol. Chem. 266, 9339–9442.

    PubMed  CAS  Google Scholar 

  • Dixon, R.O.D. and C.T. Wheeler (1986) Nitrogen Fixation in Plants. Blackie, London.

    Google Scholar 

  • Greshoff, P.M. (ed.) (1990) Molecular Biology of Symbiotic Nitrogen Fixation. CRC Press Inc., Boca Raton, Florida, USA.

    Google Scholar 

  • Holfeld, H.S., C.S. Mallard and T.A. LaRue (1979) A portable gas chromatograph. Plant and Soil 52, 595–598.

    Article  Google Scholar 

  • Packer, L. and A.N. Glazer (eds.) (1988) Methods in Enzymology. Vol. 167, Cyanobacteria. Academic Press, New York.

    Google Scholar 

  • Peoples, M.B., A.W. Faizah, B. Rertasem and D.F. Herridge (eds.) (1989) Methods for Evaluation of Nitrogen Fixation by Nodulated Legumes in the Field. ACIAR Monograph No. 11, Canberra, Australia.

    Google Scholar 

  • Postgate, J.R. (1987) Nitrogen Fixation. 2nd edn. Edward Arnold, London.

    Google Scholar 

  • Rai, A.N. (ed.) (1990) Handbook of Symbiotic Cyanobacteria. CRC Press Inc., Boca Raton, Florida, USA.

    Google Scholar 

  • Sprent, J.I. and P. Sprent (1990) Nitrogen fixing Organisms; Pure and Applied Aspects. Chapman and Hall, London.

    Google Scholar 

  • Stacey, G., R.H. Burris and H.J. Evans (eds.) (1992) Biological Nitrogen Fixation. Chapman and Hall, London.

    Google Scholar 

Download references

Authors

Editor information

D. O. Hall J. M. O. Scurlock H. R. Bolhàr-Nordenkampf R. C. Leegood S. P. Long

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lindblad, P., Guerrero, M.G. (1993). Nitrogen fixation and nitrate reduction. In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (eds) Photosynthesis and Production in a Changing Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1566-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1566-7_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-42910-1

  • Online ISBN: 978-94-011-1566-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics