Skip to main content

Muscarinic Receptors and the Developing Nervous System

  • Chapter

Abstract

The cholinergic system plays a primary role in a number of important behaviors, and cholinergic dysfunctions may result in several neurological disorders (e.g. dementias, affective disorders; Singh et al., 1985). In the central nervous system, muscarinic receptors constitute the majority of receptors of the cholinergic type. Though the muscarinic action of acetylcholine has been known since the beginning of the century, a significant advancement in our knowledge of the biochemical and molecular characteristics of muscarinic receptors has occurred only in the last decade. A number of excellent reviews on muscarinic receptors give a comprehensive discussion of the subject (Nathanson, 1987; Mitchelson, 1988; Brown, 1989; Goyal, 1989; Mei et al., 1989; van Delft et al., 1989; Hulme et al., 1990). The most striking findings of the last decade are probably the discovery of the existence of several muscarinic receptor subtypes and the characterization of their second messenger responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agullo, L. and Garcia, A. (1991) Norepinephrine increases cyclic GMP in astrocytes by a mechanism dependent on nitric oxide synthesis. Eur. J. Pharmacol., 206, 343–6.

    Article  CAS  PubMed  Google Scholar 

  • Akins, P.T., Surmeier, D.J. and Kitai, S.T. (1990) M1 muscarinic acetylcholine receptor in cultured rat neostriatum regulates phosphoinositide hydrolysis. J. Neurochem., 54, 266–73.

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini, A. and Meldolesi, J. (1989) Muscarinic and quisqualate receptor-induced phosphoinositide hydrolysis in primary cultures of striatal and hippocampal neurons. Evidence for differential mechanisms of activation. J. Neurochem., 53, 825–33.

    Article  CAS  PubMed  Google Scholar 

  • Araujo, D.M., Lapchak, P.A., Meaney, M.J. et al. (1990) Effects of aging on nicotinic and muscarinic autoreceptor function in the rat brain: relationship to presynaptic cholinergic markers and binding sites. J. Neurosci., 10,3069–78.

    CAS  PubMed  Google Scholar 

  • Aronstam, R. and Eldefrawi, M.E. (1979) Transition and heavy metal inhibition of ligand binding to muscarinic acetylcholine receptors from rat brain. Toxicol. Appl. Pharmacol., 48, 489–96.

    Article  CAS  PubMed  Google Scholar 

  • Aronstam, R.S., Kellog, C. and Abood, L.G. (1979) Development of muscarinic cholinergic receptors in inbred strains of mice: identification of receptor heterogeneity and relation to audio-genic seizure susceptibility. Brain Res., 162, 231–41.

    Article  CAS  PubMed  Google Scholar 

  • Ashendel, C.L. (1985) The phorbol ester receptor: a phospholipid-regulated protein kinase. Biochim. Biophys. Acta, 822, 219–42.

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi, A., Ramachandran, J. and Capon, D.J. (1989) Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. Nature, 340, 146–50.

    Article  CAS  PubMed  Google Scholar 

  • Aubert, I., Cecyre, D., Araujo, D.M. et al. (1990) Comparative expression of cholinergic markers during brain development. Soc. Neurosci. Abst., 16, 536.

    Google Scholar 

  • Bajgar, J., Hrdina, V., Petr, R. and Golda, V. (1979) Development of cholinergic nervous system in the brain of normal and hypertensive rats. Dev. Neurosci., 2, 94–100.

    Article  CAS  Google Scholar 

  • Balduini, W. and Costa, L.G. (1989) Effects of ethanol on muscarinic receptor-stimulated phosphoinositide metabolism during brain development. J. Pharmacol. Exp. Ther., 250, 541–7.

    CAS  PubMed  Google Scholar 

  • Balduini, W. and Costa, L.G. (1990) Developmental neurotoxicity of ethanol: in vitro inhibition of muscarinic receptor-stimulated phosphoinositide metabolism in brain from neonatal but not adult rats. Brain Res., 512, 248–52.

    Article  CAS  PubMed  Google Scholar 

  • Balduini, W., Murphy, S.D. and Costa, L.G. (1987) Developmental changes in muscarinic receptor-stimulated phosphoinositide metabolism in rat brain. J. Pharmacol. Exp. Ther.,241, 421–7.

    CAS  PubMed  Google Scholar 

  • Balduini, W., Murphy, S.D. and Costa, L.G. (1990a) Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats. J. Pharmacol. Exp. Ther., 253, 573–9

    CAS  Google Scholar 

  • Balduini, W., Murphy, S.D. and Costa, L.G. (1990b) Potassium ions potentiate the muscarinic receptor-stimulated phosphoinositide metabolism in cerebral cortex slices: a comparision of neonatal and adult rats. Neurochem. Res., 15, 33–9.

    Article  CAS  Google Scholar 

  • Balduini W., Candura, S.M., Manzo, L. et al. (1991a) Time-concentration-, and age-dependent inhibition of muscarinic receptor-stimulated phosphoinositide metabolism by ethanol in the developing rat brain. Neurochem. Res., 16, 1235–40.

    Article  CAS  Google Scholar 

  • Balduini, W., Candura, S.M. and Costa, L.G. (1991b) Regional development of carbachol-, glutamate-, norephinephrine-and serotoninstimulated phosphoinositide metabolism in rat brain. Dev. Brain Res., 62,115–20.

    Article  CAS  Google Scholar 

  • Bartolami, S., Guiramund, J., Lenoir, M. et al. (1990) Carbachol-induced inositol phosphate formation during rat cochlea development. Hear. Res., 47, 229–34.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Barak, J., Gazit, H., Silman, I. and Dudai, Y. (1981) In vivo modulation of the number of muscarinic receptors in rat brain by cholinergic ligands. Eur. J. Pharmacol., 74, 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Baruch, G., Egozi, Y., Kloog, Y. et al. (1981) Altered ontogenesis of muscarinic cholinergic receptor in mouse brain: effect of L-thyroxine and betamethasone. Endocrinology, 109, 235–9.

    Article  CAS  PubMed  Google Scholar 

  • Berridge, M.J. (1987) Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem., 56,159–93.

    Article  CAS  PubMed  Google Scholar 

  • Boess, F.G., Balasubramian, M.K., Brammer, M.J. and Campbell, I.C. (1990) Stimulation of muscarinic acetylcholine receptors increases synaptosomal free calcium concentration by protein kinase-dependent opening of L-type calcium channels. J. Neurochem., 55, 230–6.

    Article  CAS  PubMed  Google Scholar 

  • Bonner, T.I. (1989) The molecular basis of muscarinic receptor diversity. Trends Neurosci., 12,148–51.

    Article  CAS  PubMed  Google Scholar 

  • Brooksbank, B.W.L., Martinez, M., Atkinson, D.J. and Balazs, R., (1978) Biochemical development of the human brain. I. Some parameters of the cholinergic system. Dev. Neurosci., 1, 267–84.

    Article  CAS  Google Scholar 

  • Brown, J.H. (ed.) (1989) The Muscarinic Receptors. Humana Press, Clifton, NJ.

    Google Scholar 

  • Brown, T.H., Chapman, P.F., Kairiss, E.W. and Keenan, C.L. (1988) Long-term synaptic potentiation. Science, 242, 724–8.

    Article  CAS  PubMed  Google Scholar 

  • Buckley, N.J., Bonner, T.I. and Brann, M.R. (1988) Localization of a family of muscarinic receptors mRNAs in rat brain. J. Neurosci., 8, 4646–52.

    CAS  PubMed  Google Scholar 

  • Candura, S.M., Balduini, W. and Costa, L.G. (1991) Interaction of short chain aliphatic alcohols with muscarinic receptor-stimulated phosphoinositide metabolism in cerebral cortex from neonatal and adult rats. Neurotoxicology, 12, 23–32.

    CAS  PubMed  Google Scholar 

  • Candura, S.M., Manzo, L. and Costa, L.G. (1992a) Inhibition of muscarinic receptor-and Gprotein-dependent phosphoinositide metabolism in cerebrocortical membranes from neonatal rats by ethanol. Neurotoxicology, 13, 281–8.

    CAS  Google Scholar 

  • Candura, S.M., Manzo, L. and Costa, L.G. (1992b) Guanine nucleotide-and muscarinic agonistdependent phosphoinositide metabolism in synaptoneurosomes from cerebral cortex of immature rats. Neurochem. Res., 17, 1133–41.

    Article  CAS  Google Scholar 

  • Castoldi, A.F., Manzo, L. and Costa, L.G. (1993) Cyclic GMP formation induced by muscarinic receptors is mediated by nitric oxide synthesis in rat primary cultures. Brain Res. (in press).

    Google Scholar 

  • Chiarugi, V.P., Ruggiero, M. and Corradetti, R. (1989) Oncogenes, protein kinase C, neuronal differentiation and memory. Neurochem. Int.,14,1–9.

    Article  CAS  PubMed  Google Scholar 

  • Chiu, A.S., Li, P.P. and Warsh, J.J. (1988) G-protein involvement in central nervous system muscarinic receptor-coupled polyphosphoinositide hydrolysis. Biochem. J., 256, 995–9.

    CAS  PubMed  Google Scholar 

  • Costa, L.G. (1988) Organophosphorus compounds, in Recent Advances in Nervous System Toxicology (eds C.L. Galli, L. Manzo and P.S. Spencer), Plenum Press, New York, pp. 203–46.

    Chapter  Google Scholar 

  • Costa, L.G. (1990) The phosphoinositide/protein kinase C system as a potential target for neurotoxicity. Pharmacol. Res., 22, 393–408.

    Article  CAS  PubMed  Google Scholar 

  • Costa, L.G. and Fox, D.A. (1983) A selective decrease of cholinergic muscarinic receptors in the visual cortex of adult rats following developmental lead exposure. Brain Res., 276, 259–66.

    Article  CAS  PubMed  Google Scholar 

  • Coyle, J.T. (1977) Biochemical aspects of neurotransmission in the developing brain. Int. Rev. Neurobiol., 20, 65–103.

    Article  CAS  PubMed  Google Scholar 

  • Coyle, J.T. and Yamamura, H.I. (1976) Neuro-chemical aspects of the ontogenesis of cholinergic neurons in the rat brain. Brain Res., 118, 429–40.

    Article  CAS  PubMed  Google Scholar 

  • De Boer, P., Westerink, B.H.C., Rollema, H. et al. (1990) An M3-like muscarinic autoreceptor regulates the in vivo release of acetylcholine in rat striatum. Eur. J. Pharmacol., 179, 167–72.

    Article  PubMed  Google Scholar 

  • Diaz-Meco, M.T., Larrodera, P., Lopez-Barahona, M. et al. (1989) Phospholipase C-mediated hydrolysis of phosphatidylcholine is activated by muscarinic agonists. Biochem. J., 263,115–20.

    CAS  PubMed  Google Scholar 

  • Dohanick, G.P., Witcher, J.A., Weaver, D.R. and Clemens, L.G. (1982) Alteration of muscarinic binding in specific brain areas following estrogen treatment. Brain Res.,241, 347–50.

    Article  Google Scholar 

  • Dörner, G., Bluth, R. and Tönjer, R. (1982) Acetylcholine concentrations in the developing brain appear to affect emotionality and mental capacity in later life. Acta Biol. Med. Germ.,41, 721–3.

    PubMed  Google Scholar 

  • Drummond, A.H., Joels, L.A. and Hughes, P.J. (1987) The interaction of lithium ions with inositol lipid signalling systems. Biochem. Soc. Trans., 15, 32–5.

    CAS  PubMed  Google Scholar 

  • Dudai, Y. and Yavin, E. (1978) Ontogenesis of muscarinic receptors and acetylcholinesterase in differentiating rat cerebral cortex in culture. Brain Res., 155, 368–73.

    Article  CAS  PubMed  Google Scholar 

  • Dudai, Y., Ben-Barak, J., Silman, I. and Gazik, H. (1980) Ontogenesis and modulation of cholinergic receptors in rat brain, in Neurotransmitters and Their Receptors (eds U.Z. Littauer, Y. Dudai, I. Silman et al.), Wiley, New York, pp. 217–39.

    Google Scholar 

  • Dudek, S.M., Bowen, W.D. and Bear, M.F. (1989) Postnatal changes in glutamate-stimulated phosphoinositide turnover in rat neocortical synaptoneurosomes. Dev. Brain. Res., 47,123–8.

    Article  CAS  Google Scholar 

  • East, J.M. and Dutton, G.R. (1980) Muscarinic binding sites in developing normal and mutant mouse cerebellum. J. Neurochem., 34, 657–61.

    Article  CAS  PubMed  Google Scholar 

  • Egozi, Y., Kloog, Y. and Sokolovsky, M. (1980) Studies on postnatal changes of muscarinic receptors in mouse brain, in Neurotransmitters and Their Receptors (eds U.Z. Littauer, Y. Dudai, I. Silman et al.), Wiley, New York, pp. 201–15.

    Google Scholar 

  • Egozi, Y., Sokolovsky, M., Scheijter, E. et al. (1986) Divergent regulation of muscarinic binding sites and acetylcholinesterase in discrete regions of the developing human fetal brain. Cell. Mol. Neurobiol., 6, 55–70.

    Article  CAS  PubMed  Google Scholar 

  • El-Fakahany, E.E. and Cioffi, C.L. (1990) Molecular mechanisms of regulation of neuronal muscarinic receptor sensitivity. Membr. Biochem., 9, 9–27.

    Article  PubMed  Google Scholar 

  • El-Fakahany, E.E. and Richelson, E. (1983) Effect of some calcium antagonists on muscarinic receptor-mediated cyclic GMP formation. J. Neurochem., 40, 705–10.

    Article  PubMed  Google Scholar 

  • Ellis, J., Huyler, J.H., Kemp, D.E. and Weiss, S. (1990) Muscarinic receptors and second-messenger responses of neurons in primary culture. Brain Res., 511, 234–40.

    Article  CAS  PubMed  Google Scholar 

  • Enna, S.J., Yamamura, H.I. and Snyder, S.H. (1976) Development of muscarinic cholinergic and GABA receptor binding in chick embryo brain. Brain Res., 101,177–83.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, P. and Nordberg, A. (1986) The effects of DDT, DDOH-palmitic acid and a chlorinated paraffin on muscarinic receptors and the sodium-dependent choline uptake in the central nervous system of immature mice. Toxicol. Appl. Pharmacol., 85,121–7.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, P. and Nordberg, A. (1990) Effects of two pyrethroids, Bioallethrin and Deltamethrin, on subpopulations of muscarinic and nicotinic receptors in the neonatal mouse brain. Toxicol. Appl. Pharmacol., 102, 456–63.

    Article  CAS  PubMed  Google Scholar 

  • Eusebi, F., Pasetto, N. and Siracusa, G. (1984) Acetylcholine receptors in human oocytes. J. Physiol., 346, 321–30.

    CAS  PubMed  Google Scholar 

  • Eva, C. and Costa, E. (1986) Potassium ions facilitation of phosphoinositide turnover activation by muscarinic receptor agonists in rat brain. J. Neurochem., 46,1429–35.

    Article  CAS  PubMed  Google Scholar 

  • Evans, R.A., Watson, M., Yamamura, H.I. and Roeske, W.R. (1985) Differential ontogeny of putative M1 and M2 muscarinic receptor binding sites in the murine cerebral cortex and heart. J. Pharmacol. Exp. Ther.,235, 612–18.

    CAS  PubMed  Google Scholar 

  • Fain, J.N. (1990) Regulation of phosphoinositidespecific phospholipase C. Biochim. Biophys. Acta, 1053, 81–8.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Tomè, P. and Segal, M. (1987) Onto-genesis of muscarinic receptors in cultured rat hippocampal cells. Dev. Brain Res., 35,158–60.

    Article  Google Scholar 

  • Filogamo, G. and Marchisio, P.C. (1971) Acetylcholine system and neural development. Neurosci. Res.,4, 29–64.

    CAS  PubMed  Google Scholar 

  • Forray, C. and El-Fakahany, E.E. (1990) On the involvement of multiple muscarinic receptor subtypes in the activation of phosphoinositide metabolism in rat cerebral cortex. Mol. Pharmacol., 37, 893–902.

    CAS  PubMed  Google Scholar 

  • Fox, D.A., Wright, A.A. and Costa, L.G. (1982) Visual acuity deficits following neonatal lead exposure: cholinergic interactions. Neurobehay. Toxicol. Teratol., 4, 689–93.

    CAS  Google Scholar 

  • Garthwaite, J., Garthwaite, G., Palmer, R.M.J. and Moncada, S. (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur. J. Pharmacol., 172, 413–16.

    Article  CAS  PubMed  Google Scholar 

  • Gonzales, R.A. and Crews, F.T. (1984) Characterization of the cholinergic stimulation of phosphoinositide hydrolysis in rat brain slices. J. Neurosci., 4, 3120–7.

    CAS  PubMed  Google Scholar 

  • Gonzales, R.A., Feldstein, J.B., Crews, F.T. and Raizada, M.K. (1985) Receptor-mediated inositide hydrolysis is a neuronal response: comparison of primary neuronal and glial cultures. Brain Res., 345, 350–5.

    Article  CAS  PubMed  Google Scholar 

  • Gonzales, R.A., Greger, P.H., Baker, S.P. et al. (1987) Phorbol esters inhibit agonist-stimulated phosphoinositide hydrolysis in neuronal primary cultures. Dev. Brain Res., 37, 759–66.

    Article  Google Scholar 

  • Goyal, R.K. (1989) Muscarinic receptor subtypes. Physiology and clinical implications. N. Engl. J. Med.,321,1022–9.

    Article  CAS  PubMed  Google Scholar 

  • Grant, K.A. and Samson, H.H. (1982) Ethanol and tertiary butanol-induced microencephaly in the neonatal rat: comparison of brain growth parameters. Neurobehay. Toxicol. Teratol., 4, 315–21.

    CAS  Google Scholar 

  • Grant, K.A. and Samson, H.H. (1984) n-Propanol-induced microencephaly in the neonatal rat. Neurobehav. Toxicol. Teratol., 6,165–9.

    CAS  PubMed  Google Scholar 

  • Gremo, F., Palomba, M., Marchisio, A.M. et al. (1987) Heterogeneity of muscarinic cholinergic receptors in the developing human fetal brain: regional distribution and characterization. Early Hum. Dev., 15, 165–77.

    Article  CAS  PubMed  Google Scholar 

  • Haga, K., Haga, T. and Ichiyama, A. (1990) Phosphorylation by protein kinase C of the muscarinic acetylcholine receptor. J. Neurochem., 54,1639–44.

    Article  CAS  PubMed  Google Scholar 

  • Hammer, R., Berrie, C.P., Birdsall, N.J.M. et al. (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature, 283, 90–2.

    Article  CAS  PubMed  Google Scholar 

  • Hanley, M.R. (1989) Mitogenic neurotransmitters. Nature, 340, 97.

    Article  CAS  PubMed  Google Scholar 

  • Harden, T.K. (1989) Muscarinic cholinergic receptor-mediated regulation of cyclic AMP metabolism, in The Muscarinic Receptors (ed. J.H. Brown), Humana Press, Clifton, NJ, pp. 221–58.

    Chapter  Google Scholar 

  • Harden, T.K. (1990) G Protein-dependent regulation of phospholipase C by cell surface receptors. Am. Rev. Respir. Dis., 141, 5119–22.

    Google Scholar 

  • Hawkins, P.T., Reynolds, D.J.M., Poyner, D.R. and Hanley, M.R. (1990) Identification of a novel inositol phosphate recognition site: specific 3Hinositol hexakisphosphate binding to brain regions and cerebellar membranes. Biochem. Biophys. Res. Commun., 167, 819–27.

    Article  CAS  PubMed  Google Scholar 

  • Heacock, A.M., Fisher, S.K. and Agranoff, B.W. (1987) Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem., 48,1904–11.

    Article  CAS  PubMed  Google Scholar 

  • Hohman, C.F. and Ebner, F.F. (1985) Development of cholinergic markers in mouse forebrain. I. Choline acetyltransferase enzyme activity and acetylcholinesterase histochemistry. Dev. Brain Res., 23, 225–41.

    Article  Google Scholar 

  • Hohman, C.F., Pert, C.C. and Ebner, F.F. (1985) Development of cholinergic markers in mouse forebrain. II. Muscarinic receptor binding in cortex. Dev. Brain Res., 23, 243–53.

    Article  Google Scholar 

  • Hohman, C.F., Brooks, A.C. and Coyle, J.T. (1988) Neonatal lesions of the basal forebrain cholinergic neurons result in abnormal cortical development. Dev. Brain Res., 42, 253–64.

    Article  Google Scholar 

  • Hoover, R.K. and Toews, M.L. (1990) Activation of protein kinase C inhibits internalization and down regulation of muscarinic receptors in 1321N1 human astrocytoma cells. J. Pharmacol. Exp. Ther., 253,185–91.

    CAS  PubMed  Google Scholar 

  • Horwitz, J. (1990) Carbachol and bradykinin increase the production of diacylglycerol from sources other than inositol-containing phospholipids in PC-12 cells. J. Neurochem., 54, 983–91.

    Article  CAS  PubMed  Google Scholar 

  • Hulme, E.C., Birdsall, N.J.M. and Buckley, N.J. (1990) Muscarinic receptor subtypes. Annu. Rev. Pharmacol. Toxicol., 30, 633–73.

    Article  CAS  PubMed  Google Scholar 

  • Ignarro, L.J. (1991) Signal transduction mechanisms involving nitric oxide. Biochem. Pharmacol., 41, 485–90.

    Article  CAS  PubMed  Google Scholar 

  • Irvine, R.F., Moor, R.M., Pollock, W.K. et al. (1988) Inositol phosphates: proliferation, metabolism and function. Philos. Trans. R. Soc. Lond. [Biol.], 320, 281–98.

    Article  CAS  Google Scholar 

  • Jia, W.G., Shaw, C., van Huizen, F. and Cynader, M.S. (1989) Phorbol 12,13-dibutyrate regulates muscarinic receptors in rat cerebral cortical slices by activating protein kinase C. Mol. Brain Res., 5, 311–15.

    Article  CAS  PubMed  Google Scholar 

  • Kasa, P., Bansaghy, K., Rakonczay, Z. and Guyla, K. (1982) Postnatal development of the acetylcholine system in different parts of the rat cerebellum. J. Neurochem., 39,1726–32.

    Article  CAS  PubMed  Google Scholar 

  • Kater, S.B. and Mills, L.R. (1991) Regulation of growth cone behavior by calcium. J. Neurosci., 11, 891–9.

    CAS  PubMed  Google Scholar 

  • Kendall, D.A. (1986) Cyclic GMP and inositol phosphate accumulation do not share common origins in rat brain slices. J. Neurochem., 47, 1483–9.

    Article  CAS  PubMed  Google Scholar 

  • Kikkawa, U., and Nishizuka, Y. (1986) The role of protein kinase C in transmembrane signalling. Annu. Rev. Cell Biol.,2,149–78.

    Article  CAS  PubMed  Google Scholar 

  • Kikkawa, U., Ogita, K., Shearman, M.S. et al. (1988) The heterogeneity and differential expression of protein kinase C in nervous tissue. Philos. Trans. R. Soc. Lond. [Biol.], 320, 313–24.

    Article  CAS  Google Scholar 

  • Kilbinger, H. (1987) Control of acetylcholine release by muscarinic autoreceptors, in International Symposium on Muscarinic Cholinergic Mechanisms (eds S. Cohen and M. Sokolovsky), Freund, London, pp. 219–28.

    Google Scholar 

  • Kotas, A.M. and Prince, A.K. (1987) High-affinity uptake of choline, a marker for cholinergic nerve terminals, is not specific in developing rat brain. Dev. Brain Res., 35,175–81.

    Article  CAS  Google Scholar 

  • Kubo, T., Fukuda, R., Mikami, A. et al. (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature, 323, 411–16.

    Article  CAS  PubMed  Google Scholar 

  • Kudo, Y., Ogura, A. and Iijima, T. (1988) Stimulation of muscarinic receptor in hippocampal neuron induces characteristic increase in cytosolic free Ca2+ concentration. Neurosci. Lett., 85, 345–50.

    Article  CAS  PubMed  Google Scholar 

  • Kuhar, M.J., Birdsall, N.J.M., Burgen, A.S.V. and Hulme, E.C. (1980) Ontogeny of muscarinic receptors in rat brain. Brain Res., 184, 375–83.

    Article  CAS  PubMed  Google Scholar 

  • Labarca, R., Janowsky, A., Patel, J. and Paul, S.M. (1984) Phorbol esters inhibit agonist-induced [3H] inositol-1-phosphate accumulation in rat hippocampal slices. Biochem. Biophys. Res. Commun., 123, 703–9.

    Article  CAS  PubMed  Google Scholar 

  • Ladinsky, H., Consolo, S., Peri, G. and Garattini, S. (1972) Acetylcholine, choline and choline acetyltransferase activity in the developing brain of normal and hypothyroid rats. J. Neurochem., 19, 1947–52.

    Article  CAS  PubMed  Google Scholar 

  • Lai, H., Carino, M.A. and Wen, Y.F. (1989) Repeated noise exposure affects muscarinic cholinergic receptors in the rat brain. Brain Res., 488, 361–4.

    Article  CAS  PubMed  Google Scholar 

  • Lai, W.S., Rogers, T.B. and El-Fakahany, E.E. (1990) Protein kinase C is involved in desensitization of muscarinic receptors induced by phorbol esters but not by receptor agonists. Biochem. J., 267, 23–9.

    CAS  PubMed  Google Scholar 

  • Lanier, L.P., Dunn, A.J. and van Hartesveldt, C. (1976) Development of neurotransmitters and their function in brain. Rev. Neurosci., 2,195–257.

    CAS  Google Scholar 

  • Large, T.H., Lambert, M.P., Gremillion, M.A. and Klein, W.L. (1986) Parallel postnatal development of choline acetyltransferase activity and muscarinic acetylcholine receptors in the rat olfactory bulb. J. Neurochem., 46, 671–80.

    Article  CAS  PubMed  Google Scholar 

  • Lauder, J.M. (1988) Neurotransmitters as morphogens. Progr. Brain Res., 73, 365–87.

    Article  CAS  Google Scholar 

  • Lee, W., Nichlaus, K.J., Manning, D.C. and Wolfe, B.B. (1990) Ontogeny of cortical muscarinic receptor subtypes and muscarinic receptor-mediated responses in rat. J. Pharmacol. Exp. Ther.,252, 482–90.

    CAS  PubMed  Google Scholar 

  • Levine, R.R. and Birdsall, N.J.M. (1989) Nomenclature for muscarinic receptor subtypes recommended by symposium. Trends Pharmacol. Sci. Suppl., Subtypes of Muscarinic Receptors, p. vii.

    Google Scholar 

  • Levy, A. (1981) The effect of cholinesterase inhibition on the ontogenesis of central muscarinic receptors. Life Sci., 29,1065–70.

    Article  CAS  PubMed  Google Scholar 

  • Liles, W.C., Hunter, D.D., Meier, K.E. and Nathanson, N.M. (1986) Activation of protein kinase C induces rapid internalization and subsequent degradation of muscarinic acetylcholine receptors in neuroblastoma cells. J. Biol. Chem., 261, 5307–16.

    CAS  PubMed  Google Scholar 

  • Llinas, R.R. (1982) Calcium in synaptic transmission. Sci. Am., 247, 56–65.

    Article  CAS  PubMed  Google Scholar 

  • Lo, W.W.Y. and Hughes, J. (1987) Receptorphosphoinositidase C coupling. Multiple G proteins? FEBS Lett., 244, 1–3.

    Article  Google Scholar 

  • Mallol, J., Sarraga, M.C., Bartolomè, M. et al. (1984) Muscarinic receptor during postnatal development of rat cerebellum: an index of cholinergic synapse formation? J. Neurochem., 42,1641–9.

    Article  CAS  PubMed  Google Scholar 

  • Martinson, E.A., Goldstein, D. and Brown, J.H. (1989) Muscarinic receptor activation of phosphatidylcholine hydrolysis. J. Biol. Chem., 264,14748–54.

    CAS  PubMed  Google Scholar 

  • Mash, D.C., Flynn, D.D. and Potter, L.T. (1985) Loss of M2 muscarinic receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science, 228,1115–17.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M.P. (1988) Neurotransmitters in the regulation of neuronal cytoarchitecture. Brain Res. Rev., 13, 179–212.

    Article  CAS  Google Scholar 

  • Mattson, M.P. (1989) Acetylcholine potentiates glutamate-induced neurodegeneration in cultured hippocampal neurons. Brain Res., 497, 402–6.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M.P. and Hauser, K.F. (1991) Spatial and temporal integration of neurotransmitter signals in the development of neural circuitry. Neurochem. Int.,19,17–24.

    Article  CAS  Google Scholar 

  • McKinney, M. and Richelson, E. (1986) Blockade of NIE-115 murine neuroblastoma muscarinic receptor function by agents that affect the metabolism of arachidonic acid. Biochem. Pharmacol., 35, 2389–97.

    Article  Google Scholar 

  • McKinney, M. and Richelson, E. (1989) Muscarinic receptor regulation of cyclic GMP and eicosanoid production, in The Muscarinic Receptors (ed J.H. Brown), Humana Press, Clifton, NJ, pp. 309–40.

    Chapter  Google Scholar 

  • Mei, L., Roeske, W.R. and Yamamura, H.I. (1989) Molecular pharmacology of muscarinic receptor heterogeneity. Life Sci., 45,1831–51.

    Article  CAS  PubMed  Google Scholar 

  • Meier, E., Hertz, L. and Schousboe, A. (1991) Neurotransmitters as developmental signals. Neurochem. Int., 19, 1–15.

    Article  CAS  Google Scholar 

  • Michalek, H., Pintor, A., Fortuna, S. and Bisso, G.M. (1985) Effects of diisopropylfluorophosphate on brain cholinergic systems of rats at early developmental stages. Fundam. Appl. Toxicol., 5, S204–12.

    Article  CAS  PubMed  Google Scholar 

  • Mitchelson, F. (1988) Muscarinic receptor differentiation. Pharmacol. Ther., 37, 357–423.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi, R., Kito, S., Shimizu, M. and Matsubayashi, H. (1987) Ontogeny of muscarinic receptors in the rat brain with emphasis on the differentiation of M1- and M2-subtypes - semiquantitative in vitro autoradiography. Brain Res., 420, 302–12.

    Article  CAS  PubMed  Google Scholar 

  • Muller, F., Dumez, Y. and Massoulie, J. (1985) Molecular forms and solubility of acetyl-cholinesterase during the embryonic development of rat and human brain. Brain Res., 331, 295–302.

    Article  CAS  PubMed  Google Scholar 

  • Nathanson, N.M. (1987) Molecular properties of the muscarinic acetylcholine receptor. Annu. Rev. Neurosci., 10, 195–236.

    Article  CAS  PubMed  Google Scholar 

  • Nathanson, N.M. (1989) Regulation and development of muscarinic receptor number and function, in The Muscarinic Receptors (ed. J.H. Brown), Humana Press, Clifton, NJ, pp. 419–54.

    Chapter  Google Scholar 

  • Navarro, H.A., Seidler, F.J., Eylers, J. et al. (1989) Effects of prenatal nicotine exposure on development of central and peripheral cholinergic neurotransmitter systems. Evidence for cholinergic trophic influences in developing brain. J. Pharmacol. Exp. Ther.,251, 894–900.

    CAS  PubMed  Google Scholar 

  • Nishizuka, Y. (1988) The molecular heterogeneity of protein kinase C and its implication for cellular regulation. Nature, 334, 661–5.

    Article  CAS  PubMed  Google Scholar 

  • Nordberg, A. and Winblad, B. (1981) Cholinergic receptors in human hippocampus. Regional distribution and variance with age. Life Sci., 29, 1937–44.

    Article  CAS  PubMed  Google Scholar 

  • Nordberg, A., Wahlström, G. and Larsson, C. (1980) Increased number of muscarinic binding sites in brain following chronic barbiturate treatment to rat. Life Sci., 26, 231–7.

    Article  CAS  PubMed  Google Scholar 

  • Ohsako, S. and Deguchi, T. (1981) Stimulation by phosphatidic acid of calcium influx and cyclic GMP synthesis in neuroblastoma cells. J. Biol. Chem., 256,10945–8.

    CAS  PubMed  Google Scholar 

  • Olianas, M.C., Onali, P., Neff, N.H. and Costa, E. (1983) Adenylate cyclase activity of synaptic membranes from rat striatum. Inhibition by muscarinic receptor agonists. Mol. Pharmacol., 23, 393–8.

    CAS  PubMed  Google Scholar 

  • Osborne, N.N. (1988) Muscarinic stimulation of inositol phosphate formation in rat retina: developmental changes. Vision Res., 29, 871–81.

    Google Scholar 

  • Pearce, B. and Murphy, S. (1988) Neurotransmitter receptors coupled to inositol phospholipid turnover and Ca2+ flux: consequences for astrocyte function, in Glial Cell Receptors (ed. H.K. Kimelberg), Raven Press, New York, pp. 197–221.

    Google Scholar 

  • Pedata, F., Slavikova, J., Kotas, A. and Pepeu, G. (1983) Acetylcholine release from rat cortical slices during postnatal development and aging. Neurobiol. Aging, 4, 31–5.

    Article  CAS  PubMed  Google Scholar 

  • Peralta, E.G., Ashkenazi, A., Winslow, J.W. et al. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature, 334, 434–7.

    Article  CAS  PubMed  Google Scholar 

  • Peralta, E.G., Ashkenazi, A., Winslow, J.W. et al. (1987) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J., 6, 3923–9.

    CAS  PubMed  Google Scholar 

  • Perry, E.K., Smith, C.J., Atach, J.R. et al. (1986) Neocortical cholinergic enzyme and receptor activities in the human fetal brain. J. Neurochem., 47,1262–9.

    Article  CAS  PubMed  Google Scholar 

  • Potter, L.T., Flynn, D.D., Hanchett, H.E. et al. (1983) Independent M1 and M2 receptors: ligands, autoradiography and functions. Trends Pharmacol. Sci. (Suppl), Subtypes of Muscarinic Receptors, pp. 22–31.

    Google Scholar 

  • Purpura, D.P. (1972) Intracellular studies of synaptic organization in the mammalian brain, in Structure and Function of Synapses (eds G.D. Pappas and D.P. Purpura), Raven Press, New York, pp. 257–302.

    Google Scholar 

  • Qian, Z. and Drewes, L.R. (1989) Muscarinic acetylcholine receptor regulates phosphatidylcholine phospholipase D in canine brain. J. Biol. Chem., 264, 21720–4.

    CAS  PubMed  Google Scholar 

  • Rana, R.S. and Hokin, L.E. (1990) Role of phosphoinositides in transmembrane signaling. Physiol. Rev., 70,115–64.

    CAS  PubMed  Google Scholar 

  • Ravikumar, B.V. and Sastry, P.S. (1985) Muscarinic cholinergic receptors in human fetal brain: characterization and ontogeny of 3H-quiniclidinyl benzilate binding sites in frontal cortex. J. Neurochem., 44, 240–6.

    Article  CAS  PubMed  Google Scholar 

  • Reece, L.J. and Schwartzkroin, P.A. (1991) Effects of cholinergic agonists on immature rat hippocampal neurons. Dev. Brain Res., 60, 29–42.

    Article  CAS  Google Scholar 

  • Represa, A., Chanez, C., Flexor, M.A. and Ben-Ari, V. (1989) Development of the cholinergic system in control and intra-uterine growth retarded rat brain. Dev. Brain Res., 47, 71–9.

    Article  CAS  Google Scholar 

  • Rooney, T.A. and Nahorski, S.R. (1987) Postnatal ontogeny of agonist and depolarization-induced phosphoinositide hydrolysis in rat cerebral cortex. J. Pharmacol. Exp. Ther.,243, 333–41.

    CAS  PubMed  Google Scholar 

  • Rotter, A., Field, P.M. and Raisman, G. (1979) Muscarinic receptors in the central nervous system of the rat. III. Postnatal development of binding of 3H-propylbenzilylcholine mustard. Brain Res. Rev., 1, 185–205.

    Article  CAS  Google Scholar 

  • Sandmann, J. and Wurtman, R.J. (1991) Stimulation of phospholipase D activity in human neuroblastoma (LA-N-2) cells by activation of muscarinic acetylcholine receptors or by phorbol esters: relationship to phosphoinositide turnover. J. Neurochem., 56,1312–19.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, B.H., Manzoni, O.J.J., Royer, M. et al. (1991) Cholinergic inositol phosphate formation in striatal neurons is mediated by distinct mechanisms. Eur. J. Pharmacol., 206, 87–94.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, G., Hardman, J.G., Schultz, K. et al. (1973) The importance of calcium ions for the regulation of guanosine 3’,5’-monophosphate levels. Proc. Natl. Acad. Sci. LISA, 70, 3889–93.

    Article  CAS  Google Scholar 

  • Serbus, D.C. and Light, K.E. (1990) Cholinergic alterations of hippocampus and cerebellum at postnatal days 21 and 25 following twice daily ethanol exposure of rats throughout the suckling period. Alcoholism, 14, 336.

    Google Scholar 

  • Shapiro, R.A., Scherer, N.M., Habecher, B.A. et al. (1988) Isolation, sequence and functional expression of the mouse M1 muscarinic acetylcholine receptor gene. J. Biol. Chem., 263,18397–403.

    CAS  PubMed  Google Scholar 

  • Singh, M.M., Warburton, D.M. and Lal, H. (eds) (1985) Central Cholinergic Mechanisms and Adaptive Dysfunctions. Plenum Press, New York.

    Google Scholar 

  • Smalheiser, N.R. (1990) Neuronal growth cones: an extended view. Neuroscience, 38,1–11.

    Article  CAS  PubMed  Google Scholar 

  • Smrcka, A.V., Hepler, J.R., Brown, K.D. and Sternweis, P.C. (1991). Regulation of phospho-inositide-specific phospholipase C activity by purified Gq. Science, 251, 804–7.

    Article  CAS  PubMed  Google Scholar 

  • Snider, R.M., McKinney, M., Forray, C. and Richelson, E. (1984) Neurotransmitter receptors mediate cyclic GMP formation by involvement of arachidonic acid and lipoxygenase. Proc. Natl. Acad. Sci. USA, 81, 3905–9.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, S.H. and Bredt, D.S. (1991) Nitric oxide as a neuronal messenger. Trends Pharmacol. Sci., 12, 125–7.

    Article  CAS  PubMed  Google Scholar 

  • Soreq, H., Gurwitz, D., Eliyahu, D. and Sokolovsky, M. (1982) Altered ontogenesis of muscarinic receptors in agranular cerebellar cortex. J. Neurochem., 39, 756–63.

    Article  CAS  PubMed  Google Scholar 

  • Stamper, C.R., Balduini, W., Murphy, S.D. and Costa, L.G. (1988) Behavioral and biochemical effects of postnatal parathion exposure in the rat. Neurotoxicol. Terato1.,10, 261–6.

    Article  CAS  Google Scholar 

  • Stephens, L.R. and Logan, S.D. (1989) Formation of [3H] inositol metabolites in rat hippocampal formation slices prelabeled with [3H] inositol and stimulated with carbachol. J. Neurochem., 52, 713–21.

    Article  CAS  PubMed  Google Scholar 

  • Stundermann, K.A., Harris, G.D. and Lovenberg, W. (1988) Characterization of inositol 1,4,5triphosphate-stimulated calcium release from rat cerebellum microsomal fractions. Biochem. J.,255, 667–83.

    Google Scholar 

  • Sun, Y.A. and Pao, M.M. (1987) Evoked release of acetylcholine from the growing embryonic neuron. Proc. Natl. Acad. Sci. USA, 84, 2540–4.

    Article  CAS  PubMed  Google Scholar 

  • Tietje, K.M., Goldman, P.S. and Nathanson, N.M. (1990) Cloning and functional analysis of a gene encoding a novel muscarinic acetylcholine receptor expressed in chick heart and brain. J. Biol. Chem., 265, 2828–34.

    CAS  PubMed  Google Scholar 

  • Vaca, K. (1988) The development of cholinergic neurons. Brain Res. Rev., 13, 262–86.

    Article  Google Scholar 

  • Vallejo, M., Jackson, T., Lightman, S. and Hanley, M.R. (1987) Occurrence and extracellular actions of inositol pentakis-and hexakis-phosphate in mammalian brain. Nature, 330, 656–8.

    Article  CAS  PubMed  Google Scholar 

  • Van Hoof, C.O.M., De Graan, P.N.E., Oestreicher, A.B. and Gispen, W.H. (1989) Muscarinic receptor activation stimulates B50/GAP43 phosphorylation in isolated nerve growth cones. J. Neurosci., 9, 3753–9.

    Google Scholar 

  • van Delft, A.M.L., Hagan, J.J. and Tonnaer, J.A.D.M. (1989) Muscarinic receptors in the central nervous system. Progr. Pharmacol. Clin. Pharmacol., 7, 93–117.

    Google Scholar 

  • Vicentini, L.M. and Villareal, M.L. (1986) Inositol phosphates turnover, cytosolic Ca2+ and pH: putative signals for the control of cell growth. Life Sci., 38, 2269–76.

    Article  CAS  PubMed  Google Scholar 

  • Vilarò, M.T., Palacios, J.M. and Mengod, G. (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci. Lett., 114, 154–9.

    Article  PubMed  Google Scholar 

  • Wallace, M.A. and Claro, E. (1990) Comparison of serotoninergic to muscarinic cholinergic stimulation of phosphoinositide-specific phospholipase C in rat brain cortical membranes. J. Pharmacol. Exp. Ther., 255,1296–300.

    CAS  PubMed  Google Scholar 

  • Wang, S.Z., Hu, J., Long, R.M. et al. (1990) Agonist-induced down regulation of m1 muscarinic receptors and reduction of their mRNA level in a transfected cell line. FEBS Lett., 276, 185–8.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, S., Schmidt, B.H., Sebben, M. et al. (1988) Neurotransmitter-induced inositol phosphate formation in neurons in primary culture. J. Neurochem., 50,1425–33.

    Article  CAS  PubMed  Google Scholar 

  • Wess, J., Bonner, T.J. and Brann, M.R. (1990) Chimeric m2/m3 muscarinic receptors: role of carboxyl terminal receptor domains in selectivity of ligand binding and coupling to phosphoinositide hydrolysis. Mol. Pharmacol., 38, 872–7.

    CAS  PubMed  Google Scholar 

  • West, J.R. (1986) Alcohol and Brain Development. Oxford University Press, New York.

    Google Scholar 

  • Wigal, S.B.E., Amsel, A. and Wilcox, R.E. (1990) Cholinergic alterations of hippocampus and cerebellum at postnatal days 21 and 25 following twice daily ethanol exposure of rats throughout the suckling period. Alcoholism, 4, 336.

    Google Scholar 

  • Worley, P.F., Baraban, J.M. and Snyder, S.H. (1989) Inositol 1,4,5-triphosphate receptor binding: autoradiographic localization in rat brain. J. Neurosci., 9, 339–46.

    CAS  PubMed  Google Scholar 

  • Yavin, E. and Harel, S. (1979) Muscarinic binding sites in the developing rabbit brain. FEBS Lett., 97,151–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Costa, L.G. (1993). Muscarinic Receptors and the Developing Nervous System. In: Zagon, I.S., McLaughlin, P.J. (eds) Receptors in the Developing Nervous System. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1544-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1544-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4674-9

  • Online ISBN: 978-94-011-1544-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics