Skip to main content

Opioid Receptors and Peptide System Regulation in the Developing Nervous System

  • Chapter
Receptors in the Developing Nervous System

Abstract

The biochemical demonstration of opioid receptors was first established in 1973 (Pert and Snyder, 1973). Earlier attempts were difficult due to low levels of specific binding and high background binding. Although these early studies identified only a single type of receptor, pharmacological studies had already suggested the existence of multiple opiate receptor types (Martin et al., 1967). Evidence from behavioral, pharmacological and biochemical studies demonstrates the existence of several opiate receptor classes: mu (µ), delta (δ) and kappa (κ) (Lord et al., 1977; Chang and Cuatrecasas, 1979). The sigma (σ) receptor is no longer considered an opioid receptor and it has been suggested that it is the PCP site of the NMDA receptor (for reviews see Snyder, 1984; Zukin and Zukin, 1988). These receptor classes mediate diverse behavioral effects, exhibit different ligand selectivity patterns and have different distributions throughout the central and peripheral nervous systems. The µ, receptor is operationally defined as the high affinity site at which morphine-like opiates produce analgesia and a variety of other classical opiate effects. This receptor has been further subdivided into µ1 and µ2 (Pasternak et al., 1983). The δ receptor exhibits a higher affinity for the naturally occurring enkephalins (a class of shorter opioid peptides) than for morphine and was originally found in peripheral tissue such as the mouse vas deferens (Lord et al., 1977). The κ receptor is that site at which ketocyclazocine-like opiates produce analgesia, as well as their unique ataxic and sedative effects (Martin et al., 1976). It is also defined as a receptor highly selective for dynorphin (a 17-amino acid opioid peptide). Some researchers have demonstrated the existence of several κ receptor subtypes as well (Attali et al., 1982; Gouarderes et al., 1983; Zukin et al., 1988). Actions at all three of these sites are reversible by the opioid antagonist naloxone or naltrexone with increasing doses required going from µ to δ to κ receptors. The complex neuropharmacological actions of a given opioid would appear to reflect its interaction at a combination of these and other opioid receptor sites with varying potencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker, D., Sachs, B.P., Tracey, K.J. and Wise, W.E. (1983) Abruptio placentae associated with cocaine use. Am. J. Obstet. Gynecol., 146 220–1.

    CAS  PubMed  Google Scholar 

  • Akil, H., Watson, S.J., Young, E. et al. (1984) Endogenous opioids: biology and function. Annu. Rev. Neurosci., 7 223–55.

    Article  CAS  PubMed  Google Scholar 

  • Attali, B., Gouarderes, C., Mazaguil, H. et al. (1982) Evidence of multiple kappa binding sites by use of opioid peptides in the guinea pig lumbrosacral spinal cord. Neuropeptides, 3 53.

    Article  CAS  PubMed  Google Scholar 

  • Attali, B. and Vogel, Z. (1989) Long-term opiate exposure leads to reduction of the α-1 subunit of GTP-binding proteins. J. Neurochem., 531636–9.

    Article  CAS  PubMed  Google Scholar 

  • Bardo, M.T., Bhatnagar, R.K. and Gebhart, G.F. (1982) Differential effects of chronic morphine and naloxone on opiate receptors, monoamines and morphine-induced behaviors in preweanling rats. Dev. Brain Res., 4139–47.

    Article  CAS  Google Scholar 

  • Bardo, M.T., Bhatnagar, R.K. and Gebhart, G.F. (1983a) Age-related differences in the effect of chronic administration of naloxone on opiate binding in rat brain. Neuropharmacology, 22 453–61.

    Article  CAS  Google Scholar 

  • Bardo, M.T., Bhatnagar, R.K. and Gebhart, G.F. (1983b) Chronic naltrexone increases opiate binding in brain and produces supersensitivity to morphine in the locus coeruleus of the rat. Brain Res., 289 223–34.

    Article  CAS  Google Scholar 

  • Barr, G.A., Paredes, W., Erickson, K.L. and Zukin, R.S. (1986) x-opioid receptor-mediated analgesia in the developing rat. Dey. Brain Res., 28 145–52.

    Article  Google Scholar 

  • Bauman, P.S. and Levine, S.A. (1986) The development of children of drug addicts. Int. J. Addict., 21 849–63.

    CAS  PubMed  Google Scholar 

  • Beitner, D.B., Duman, R.S. and Nestler, E.J. (1989) A novel action of morphine in the rat locus coeruleus: persistent decrease in adenylate cyclase. Mol. Pharmacol., 35 559–64.

    CAS  PubMed  Google Scholar 

  • Bergstrom, L. and Terenius, L. (1983) Enkephalin levels decrease in rat striatum during morphine abstinence. Eur. J. Pharmacol., 60 349–52.

    Article  Google Scholar 

  • Bhargava, H.N., Ramarao, P. and Gulati, A. (1989a) Effects of morphine in rats treated chronically with U-50,488H, a kappa opioid receptor agonist. Eur. J. Pharmacol., 162, 257–64.

    Article  CAS  Google Scholar 

  • Bhargava, H.N., Gulati, A. and Ramarao, P. (1989b) Effect of chronic administration of U-50,488H on tolerance to its pharmacological actions and on multiple opioid receptors in rat brain regions and spinal cord. J. Pharmacol. Exp. Ther., 251 21–6.

    CAS  Google Scholar 

  • Bingol, N., Fuchs, M., Diaz, V. et al. (1987) Teratogenicity of cocaine in humans. J. Pediatr., 110 93–6.

    Article  CAS  PubMed  Google Scholar 

  • Blanchard, S.G., Chang, K.J. and Cuatrecasas, P. (1983) Characterization of the association of tritiated enkephalin with neuroblastoma cells under conditions optimal for receptor down-regulation. J. Biol. Chem., 2581092–7.

    CAS  PubMed  Google Scholar 

  • Blinick, G., Inturrisi, C.E., Jerez, E. and Wallach, R.C.(1975) Methadone assays in pregnant women and progeny. Am. J. Obstet. Gynecol., 121, 617–21.

    CAS  PubMed  Google Scholar 

  • Braas, K.A., Childers, S.R. and U’Prichard, D.C. (1983) Induction of differentiation increases Met5-enkephalin and Leu5-enkephalin content in NG108–15 hybrid cells: an immunocytochemical and biochemical analysis. J. Neurosci., 3108–15.

    CAS  PubMed  Google Scholar 

  • Brady, L.S., Herkenham, M., Long, J.B. and Rothman, R.B. (1989) Chronic morphine increases mu-opiate receptor binding in rat brain: a quantitative autoradiographic study. Brain Res., 477 382–6.

    Article  CAS  PubMed  Google Scholar 

  • Brunello, N., Volterra, A., DiGiulio, A.M. et al. (1984) Modulation of opioid system in C57 mice after repeated treatment with morphine and naloxone: biochemical and behavioral correlates. Life Sci., 341669–78.

    Article  CAS  PubMed  Google Scholar 

  • Chang, D.M. and Costa, E. (1979) Evidence for internalization of the recognition site of betaadrenergic receptors during receptor subsensitivity induced by (-)isoproterenol. Proc. Natl. Acad. Sci. USA, 76 3024–8.

    Article  Google Scholar 

  • Chang, K.J. and Cuatrecasas, P. (1979) Multiple opiate receptors: enkephalins and morphine bind to receptors of different specificity. J. Biol. Chem., 254 2610–18.

    CAS  PubMed  Google Scholar 

  • Chang, K.J., Eckel, R.W. and Blanchard, S.G. (1982) Opioid peptides induce reduction of enkephalin receptors in cultured neuroblastoma cells. Nature, 296 446–8.

    Article  CAS  PubMed  Google Scholar 

  • Chasnoff, I.J., Burns, W.J., Schnoll, S.H. and Burns, K.A. (1985) Cocaine use in pregnancy. N. Engl. J. Med., 313 666–9.

    Article  CAS  PubMed  Google Scholar 

  • Chasnoff, I.J., Burns, K.A. and Burns, W.J. (1987) Cocaine use in pregnancy: perinatal morbidity and mortality. Neurotoxicol. Teratol., 9 291–3.

    Article  CAS  PubMed  Google Scholar 

  • Chasnoff, I.J., Bussey, M.E., Sarich, R. and Stack, C.M. (1986) Perinatal cerebral infarction and maternal cocaine use. J. Pediatr., 108 456–9.

    Article  CAS  PubMed  Google Scholar 

  • Cherukuri, R., Minkoff, H., Feldman, J. et al. (1988) A cohort study of alkaloidal cocaine (’crack’) in pregnancy. Obstet. Gynecol., 72147–51.

    CAS  PubMed  Google Scholar 

  • Childers, S.R., Simantov, R. and Snyder, S.H. (1977) Enkephalin: radioimmunoassay and radioreceptor assay in morphine dependent rats. Eur. J. Pharmacol., 46 289–93.

    Article  CAS  PubMed  Google Scholar 

  • Church, M.W., Dintcheff, B.A. and Gessner, P.K. (1988) Dose-dependent consequences of cocaine on pregnancy outcome in the Long-Evans Rat. Neurotoxicol. Teratol., 10, 51–8.

    Article  CAS  PubMed  Google Scholar 

  • Church, M.W., Overbeck, G.W. and Andrzejczak, A.L. (1990) Prenatal cocaine exposure in the Long-Evans Rat: I. Dose-dependent effects on gestation, mortality, and postnatal maturation. Neurotoxicol. Teratol., 12 327–34.

    Article  CAS  PubMed  Google Scholar 

  • Clayton, R.R. (1985) Cocaine use in the U.S.: in a blizzard or just being snowed, in Cocaine Use in America: Epidemiologic and Clinical Perspectives, NIDA Monograph (eds J. Kozel and E.H. Adams), US Dept. Health Human Services, Rockville, MD, Vol. 61, pp. 8–34.

    Google Scholar 

  • Clendeninn, N.J., Petraitis, M. and Simon, E.J. (1976) Ontological development of opiate receptors in rodent brain. Brain Res., 118,157–60.

    Article  CAS  PubMed  Google Scholar 

  • Clow, D.W., Hammer, R.P., Kirstein, C.L. and Spear, L.P. (1991) Gestational cocaine exposure increases opiate receptor binding in weanling offspring. Dev. Brain Res., 59 179–85.

    Article  CAS  Google Scholar 

  • Collier, H.O.J. (1985) A general theory of the genesis of drug dependence by induction of receptors. Nature, 205181–3.

    Article  Google Scholar 

  • Collier, H.O.J., and Roy, A.C. (1974) Morphine-like drugs inhibit the stimulation of E prostaglandins of cyclic AMP formation by rat brain homogenate. Nature, 248 24–7.

    Article  CAS  PubMed  Google Scholar 

  • Connaughton, J.F., Finnegan, L.P., Schur, J. and Emich, J.P. (1973) Current concepts in the management of the pregnant opiate addict. Addictive Dis., 2 21–36.

    Google Scholar 

  • Corbett, A.D., Paterson, S.J., McKnight, A.T. et al. (1983) Dynorphin 1–8 and dynorphin 1–8 are ligands for the x-subtype of opiate receptor. Nature, 299 1–8.

    Article  Google Scholar 

  • Costa, T., Klinz, F.J., Vachon, L. and Herz, A. (1988) Opioid receptors are coupled tightly to G proteins but loosely to adenylate cyclase in NG108–15 cell membranes. Mol. Pharmacol., 34 108–15.

    CAS  PubMed  Google Scholar 

  • Coyle, J.T. and Pert, C.B. (1976) Ontogenetic development of [3H] naloxone binding in rat brain. Neuropharmacology, 15 555–60.

    Article  CAS  PubMed  Google Scholar 

  • Crain, S.M., Shen, K.F. and Chalazonitis, A. (1988) Opioids excite rather than inhibit sensory neurons after chronic opioid exposure of spinal cord-ganglion cultures. Brain Res., 455 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Critchley, H.O.D., Woods, S.M., Barson, A.J. et al. (1988) Fetal death in utero and cocaine abuse. Case report. Br. J. Obstet. Gynaecol., 95195–6.

    Article  CAS  PubMed  Google Scholar 

  • Danks, J.A., Tortella, F.C., Bykov, V. et al. (1988) Chronic administration of morphine and naltrexone up-regulate [3H][D-Ala2, D-leu5lenkephalin binding sites by different mechanisms. Neuro-pharmacology, 27 965–74.

    CAS  Google Scholar 

  • Davis, M.W. and Lin, C.H. (1972) Prenatal morphine effects on survival and behavior of rat offspring. Res. Commun. Chem. Pathol. Pharmacol., 3 205–14.

    CAS  PubMed  Google Scholar 

  • Deren, S. (1986) Children of substance abusers: a review of the literature. J. Subst. Abuse Treat., 3 77–94.

    Article  CAS  PubMed  Google Scholar 

  • Dole, V.P. and Nyswander, M.A. (1965) Medical treatment for diacetyl-morphine (heroin) addiction. J. Am. Med. Assoc., 193 646–50.

    Article  CAS  Google Scholar 

  • Dow-Edwards, D.L. (1989) Long-term neuro-chemical and neurobehavioral consequences of cocaine use during pregnancy. Ann. NY Acad. Sci., 562 280–9.

    Article  CAS  PubMed  Google Scholar 

  • Dow-Edwards, D.L. (1991) Cocaine effects on fetal development: a comparison of clinical and animal research findings. Neurotoxicol. Teratol.,13, 347–52.

    Article  CAS  PubMed  Google Scholar 

  • Dow-Edwards, D.L., Freed, L.A. and Milorat, T.H. (1986) The effects of cocaine on development. Soc. Neurosci. Abstr., 12, 59–12.

    Google Scholar 

  • Dow-Edwards, D.L., Fico, T.A. and Hutchings, D.E. (1988) Functional effects of cocaine given during critical periods of development. Teratology, 37 518.

    Google Scholar 

  • Dow-Edwards, D.L., Freed, L.A. and Fico, T.A. (1990) Structural and functional effects of prenatal cocaine exposure in adult rat brain. Dev. Brain Res., 57 263–8.

    Article  CAS  Google Scholar 

  • Duman, R.S., Tallman, J.F. and Nestler, E.J. (1988) Acute and chronic opiate-regulation of adenylate cyclase in brain: specific effects in locus coeruleus. J. Pharmacol. Exp. Ther., 2461033–9.

    CAS  PubMed  Google Scholar 

  • Elsworth, J.D., Redmond, D.E. and Roth, R.H. (1986) Effect of morphine treatment and withdrawal on endogenous methionine-and leucine-enkephalin levels in primate brain. Biochem. Pharmacol., 35 3415–17.

    Article  CAS  PubMed  Google Scholar 

  • Fantel, A.G. and MacPhail, B.J. (1982) The teratogenicity of cocaine. Teratology, 2617–19.

    Article  CAS  PubMed  Google Scholar 

  • Finnegan, L.P. (1975) Narcotics dependence in pregnancy. J. Psychedelic Drugs, 7 299–311.

    Article  Google Scholar 

  • Florio, V.A. and Sternwies, P.C. (1985) Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem., 260 3477–83.

    CAS  PubMed  Google Scholar 

  • Foss, J.A. and Riley, E.A. (1988) Behavioral evaluation of animals exposed prenatally to cocaine. Teratology, 37, 517.

    Google Scholar 

  • Fratta, W., Yang, H.Y.T., Hong, J. and Costa, E. (1977) Stability of met-enkephalin content in brain structures of morphine-dependent or foot-shock stressed rats. Nature, 268 452–3.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, P.R. (1980) Methadone exposure in utero: effects on open-field activity in weanling rats. Int. J. Neurosci.,11, 295–300.

    Article  CAS  PubMed  Google Scholar 

  • Fulroth, R., Phillips, B. and Durand, D.J. (1989) Perinatal outcome of infants exposed to cocaine and/or heroin in utero. Am. J. Dis. Child., 143 905–10.

    CAS  PubMed  Google Scholar 

  • Fung, B.K.-K. (1983) Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. Biol. Chem., 25810495–502.

    CAS  Google Scholar 

  • Galant, S.P., Durisetti, L., Underwood, S. and Insel, P.A. (1978) Decreased beta-adrenergic receptors on polymorphonuclear leukocytes after adrenergic therapy. N. Engl. J. Med., 299 933–6.

    Article  CAS  PubMed  Google Scholar 

  • Genazzani, A.R., Petraglia, F., Guidetti, R., et al. (1986) Neonatal β-endorphin secretion in babies passively addicted to opiates. Int. Congr. Ser. Excerpta Med., 369 379–82.

    Google Scholar 

  • Gilman, A.G. (1987) G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem., 56 615–49.

    Article  CAS  PubMed  Google Scholar 

  • Gintzler, A.R. and Xu, H. (1991) Different G proteins mediate the opioid inhibition or enhancement of evoked [5-methionine] enkephalin release. Proc. Natl. Acad. Sci. USA, 88 4741–5.

    Article  CAS  PubMed  Google Scholar 

  • Glaubiger, G. and Lefkowitz, R.J. (1977) Elevated beta-adrenergic receptor number after chronic propranolol treatment. Biochem. Biophys. Res. Commun., 78 720–5.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, A., Fischli, W., Lowney, L.I. et al. (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc. Natl. Acad. Sci. USA, 78 7219–23.

    Article  CAS  PubMed  Google Scholar 

  • Goodfriend, M.J., Shey, I.A. and Klein, M.D. (1956) The effects of maternal narcotic addiction on the newborn. Am. J. Obstet. Gynecol., 71 29–36.

    CAS  PubMed  Google Scholar 

  • Gouarderes, C., Attali, B., Audigier, Y and Cros, J. (1983) Interaction of selective mu and delta ligands with the kappa2 subtype of opiate binding sites. Life Sci., 33175–8.

    Article  CAS  PubMed  Google Scholar 

  • Gubler, U., Seeberg, P., Hoffman, B.J. et al. (1982) Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides. Nature, 295 206–8.

    Article  CAS  PubMed  Google Scholar 

  • Guitart, X. and Nestler, E.J. (1989) Identification of morphine and cyclic AMP-regulated phosphoproteins (MARPPs) in the locus coeruleus and other regions of rat brain. Regulation by acute and chronic morphine. J. Neurosci., 9 4371–87.

    CAS  PubMed  Google Scholar 

  • Guitart, X. and Nestler, E.J. (1990) Identification of MARPP (14–20), morphine-and cyclic AMP-regulated phosphoproteins of 14–20 kDa, as myelin basic proteins: evidence for their acute and chronic regulation by morphine in rat brain. Brain Res., 516 14–20.

    Article  CAS  PubMed  Google Scholar 

  • Guitart, X., Hayward, M.D., Nissenbaum, L.K. et al. (1990) Identification of MARPP-58, a morphine-and cAMP-regulated phosphoprotein of 58 kDa, as tyrosine hydroxylase: evidence for regulation of its expression by chronic morphine in the rat locus coeruleus. J. Neurosci., 10 2649–59.

    CAS  PubMed  Google Scholar 

  • Hammer, R.P. (1989) Cocaine alters opiate receptor binding in critical brain reward regions. Synapse, 3 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Handelmann, G.E., and Quirion, R. (1983) Neonatal exposure to morphine increases mu opiate binding in the adult forebrain. Eur. J. Pharmacol., 94 357–8.

    Article  CAS  PubMed  Google Scholar 

  • Hans, S.L. (1989) Development consequences of prenatal exposure to methadone. Ann. NY Acad. Sci., 562195–207.

    Article  CAS  PubMed  Google Scholar 

  • Hazum, E., Chang, K.J. and Cuatrecasas, P. (1981) Receptor redistribution induced by hormones and neurotransmitters: possible relationship to biological functions. Neuropeptides, 1 217–30.

    Article  CAS  Google Scholar 

  • Herkenham, M. and Pert, C.B. (1981) Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat stria-turn. Nature, 291 415–18.

    Article  CAS  PubMed  Google Scholar 

  • Herkenham, M. and McLean, S. (1986) Mismatches between receptor and transmitter localizations in the brain, in Quantitative Receptor Autoradiography (eds C. Boast, E.W. Altar and C.A. Snowhill), Alan Liss, New York, p. 131–71.

    Google Scholar 

  • Hitzemann, R., Hitzemann, B. and Loh, H. (1974) Binding of [3H]naloxone in the mouse brain: effect of ions and tolerance development. Life Sci., 14 2393–404.

    Article  CAS  PubMed  Google Scholar 

  • Hofer, M.A. (1984) Relationships as regulators: a psychobiologic perspective on bereavement. Psychosom. Med., 46183–97.

    CAS  PubMed  Google Scholar 

  • Holaday, J•W., Hitzemann, R.J., Curell, J. et al. (1982) Repeated electroconvulsive shock or chronic morphine treatment increases the number of [3H]D-Ala2 D-Len5-enkephalin binding sites in rat brain membranes. Life Sci., 31 2359–62.

    Article  CAS  PubMed  Google Scholar 

  • Hollt, V., Przewlocki, R. and Herz, A. (1978) 0- Endorphin-like immunoreactivity in plasma, pituitaries and hypothalamus of rats following treatment with opiates. Life Sci., 231057–66.

    Article  CAS  PubMed  Google Scholar 

  • Householder, J., Hatcher, R., Burns, W. and Chasnoff, I. (1982) Infants born to narcotic-addicted mothers. Psychol. Bull., 92 453–68.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, J., Smith, T.W., Kosterlitz, H.W. et al. (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature,258 577–80.

    Article  CAS  PubMed  Google Scholar 

  • Hutchings, D.E. (1985a) Issues of methodology and interpretation in clinical and animal behavioral teratology studies. Neurobehay. Toxicol. Teratol., 7, 639–42.

    CAS  Google Scholar 

  • Hutchings, D.E. (1985b) Prenatal opioid exposure and the problem of casual inference, in Current Research on the Consequences of Maternal Drug Use. National Institute on Drug Abuse Research Series (ed. T.M. Pinkert) DHHS Pub. No. (ADM) 85–1400. Supt of Docs, US Govt Printing Office, Washington, DC, pp. 85–1400.

    Google Scholar 

  • Hutchings, D.E. and Fifer, W.P. (1986) Neurobehavioral effects in human and animal offspring following prenatal exposure to methadone, in Handbook of Behavioral Teratology (eds E.P. Riley and C.V. Vorhees), Plenum Press, New York, pp. 141–60.

    Chapter  Google Scholar 

  • Hutchings, D.E., Bodnarenko, S.R. and Diaz-DeLeon, R. (1984) Phencyclidine during pregnancy in the rat: effects on locomotor activity in the offspring. Pharmacol. Biochem. Behay., 20 251–4.

    Article  CAS  Google Scholar 

  • Hutchings, D.E., Fico, T.A. and Dow-Edwards, D.L. (1989) Prenatal cocaine: maternal toxicity, fetal effects, and locomotor activity in rat offspring. Neurotoxicol. Teratol., 11, 65–9.

    Article  CAS  PubMed  Google Scholar 

  • Iyengar, S. and Rabii, J. (1982) Effect of prenatal exposure to morphine on the postnatal development of opiate receptors. Fed. Proc., 41 354–7.

    Google Scholar 

  • James, I.F., Chavkin, C. and Goldstein, C. (1982) Selectivity of dynorphin for kappa opioid receptors. Life Sci., 311331–4.

    Article  CAS  PubMed  Google Scholar 

  • Jeremy, R.J. and Hans, S.L. (1985) Behavior of neonates exposed in utero to methadone as assessed on the Brazelton scale. Infant Behay. Dev., 8, 323–36.

    Article  Google Scholar 

  • Kandall, S.R., Album, S., Dreyer, E. et al. (1975) Differential effects of heroin and methadone on birth weights. Addictive Dis., 2 347–55.

    CAS  Google Scholar 

  • Kaye, K., Elkind, L., Goldberg, D. and Tytun, A. (1989) Birth outcomes for infants of drug abusing mothers. NY State J. Med., 89 256–61.

    CAS  Google Scholar 

  • Kent, J.L., Pert, C.B. and Herkenham, M. (1982) Ontogeny of opiate receptors in rat forebrain: visualization by in vitro autoradiography. Dev. Brain Res., 2 487–504.

    Article  Google Scholar 

  • Kilty, J.E., Lorang, D. and Amara, S.G. (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science, 254 578–9.

    Article  CAS  PubMed  Google Scholar 

  • Kirby, M.L. and Aronstam, R.S. (1983) Levorphanol-sensitive [3H] naloxone binding in developing brainstem following prenatal morphine exposure. Neurosci. Lett., 35191–5.

    Article  CAS  PubMed  Google Scholar 

  • Kirby, M.L., Gale, T.F. and Mattio, T.C. (1982) Effects of prenatal capsaicin treatment on fetal spontaneous activity, opiate receptor binding, and acid phosphatase in the spinal cord. Exp. Neurol., 76 298–308.

    Article  CAS  PubMed  Google Scholar 

  • Klee, W.A. and Streaty, R.A. (1974) Narcotic receptor sites in morphine-dependent rats. Nature, 248 61–3.

    Article  CAS  PubMed  Google Scholar 

  • Kuhar, M.J., Ritz, M.C. and Boja, J.W. (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurol. Sci., 14 229–302.

    Article  Google Scholar 

  • Lahti, R.A. and Collins, R.J. (1978) Chronic naloxone results in prolonged increases in opiate binding sites in brain. Eur. J. Pharmacol., 51185–6.

    Article  CAS  PubMed  Google Scholar 

  • Law, P.Y., Wu, J., Koehler, J. and Loh, H.H.J. (1981) Demonstration and characterization of opiate inhibition of the striatal adenylate cyclase. J. Neurochem., 361834–6.

    Article  CAS  PubMed  Google Scholar 

  • Leslie, F.M., Tso, S. and Hurlbut, D.E. (1982) Differential appearance of opiate receptor subtypes in neonatal rat brain. Life Sci., 311393–6.

    Article  CAS  PubMed  Google Scholar 

  • Lesser-Katz, M. (1982) Some effects of maternal drug addiction on the neonate. Int. J. Addict., 17 887–96.

    CAS  PubMed  Google Scholar 

  • Lord, J.A.H., Waterfield, A.A., Hughes, J. and Kosterlitz, H.W. (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature, 267 495–9.

    Article  CAS  PubMed  Google Scholar 

  • Loughlin, S.E., Massamiri, T., Kornblum, H.I. and Leslie, F.M. (1985) Postnatal development of opioid systems in rat brain. Neuropeptides, 5 469–72.

    Article  CAS  PubMed  Google Scholar 

  • Madden, J.D., Payne, T.F. and Miller, S. (1986) Maternal cocaine abuse and effect on the newborn. Pediatrics, 77 209–11.

    CAS  PubMed  Google Scholar 

  • Mahalik, M.P., Gautieri, R.F. and Mann, D.E. (1980) Teratogenic potential of cocaine hydrochloride in CS-1 mice. J. Pharm. Sci., 69 703–6.

    Article  CAS  PubMed  Google Scholar 

  • Mahalik, M.P., Gautieri, R.F. and Mann, D.E. (1984) Mechanisms of cocaine-induced teratogenesis. Res. Commun. Subst. Abuse, 5 279–302.

    CAS  Google Scholar 

  • Mains, R.E., Eipper, B.A. and Ling, N. (1977) Common precursor to corticotropins and endorphins. Proc. Natl. Acad. Sci. USA, 74 3014–8.

    Article  CAS  PubMed  Google Scholar 

  • Mansour, A., Khachaturian, H., Lewis, M.E. et al. (1987) Autoradiographie differentiation of mu, delta and kappa opioid receptors in the rat forebrain and midbrain. J. Neurosci., 7, 2445–64.

    CAS  PubMed  Google Scholar 

  • Martin, W.R., Eades, C.G., Thompson, J.A. et al. (1976) The effects of morphine-and nalorphinelike drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther., 197 517–32.

    CAS  PubMed  Google Scholar 

  • Mayorga, L.S., Diaz, R. and Stahl, P.D. (1989) Regulatory role for GTP-binding proteins in endocytosis. Science, 2441475–7.

    Article  CAS  PubMed  Google Scholar 

  • McGinty, J.F. and Ford, D.H. (1980) Effects of prenatal methadone on rat brain catecholamines. Dev. Neurosci., 3,224–34.

    Article  Google Scholar 

  • McGivern, R.F., Raum, W.J., Sokol, R.Z. and Peterson, P. (1988) Long-term effects of prenatal cocaine exposure on scent marking and the HPG axis in male rats. Teratology, 37 518.

    Google Scholar 

  • Millan, M.J., Morris, B.J. and Herz, A. (1988) Antagonist-induced opioid receptor upregulation. I. Characterization of supersensitivity to selective mu and kappa agonists. J. Pharmacol. Exp. Ther., 247 721–8.

    CAS  PubMed  Google Scholar 

  • Moon, S.L. (1984) Prenatal haloperidol alters striatal dopamine and opiate receptors. Brain Res., 323109–13.

    Article  CAS  PubMed  Google Scholar 

  • Morris, B.J. and Herz, A. (1989) Control of opiate receptor number in vivo: simultaneous kappa-receptor down-regulation and mu-receptor up-regulation following chronic agonists/antagonist treatment. Neuroscience, 29 433–42.

    Article  CAS  PubMed  Google Scholar 

  • Nestler, E.J. and Tallman, J.F. (1988) Chronic morphine treatment increases cyclic AMP-dependent protein kinase activity in the rat locus coeruleus. Mol. Pharmacol., 33127–32.

    CAS  PubMed  Google Scholar 

  • Nestler, E.J., Erdos, J.J., Terwilliger, R. et al. (1989) Regulation of G-proteins by chronic morphine in the rat locus coeruleus. Brain Res., 476 230–9.

    Article  CAS  PubMed  Google Scholar 

  • Nestler, E.J., Beitner, D.B., Hayward, M. et al. (1990a) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on brain function. Soc. Neurosci. Abstr.,16, 928.

    Google Scholar 

  • Nestler, E.J., Terwilliger, R.Z., Walker, J.R. et al. (1990b) Chronic cocaine treatment decreases levels of the G protein subunits G. and Goa in discrete regions of rat brain. J. Neurochem., 55 1079–82.

    Article  CAS  Google Scholar 

  • Nishino, K., Su, Y.F., Wong, C.S. et al. (1990) Dissociation of mu opioid tolerance from receptor down-regulation in rat spinal cord. J. Pharmacol. Exp. Ther., 253 67–72.

    CAS  PubMed  Google Scholar 

  • Panerai, A.E., Martini, A., DiGiulio, A.M. et al. (1983) Plasma 13-endorphin, ß-lipotropin, and met-enkephalin concentrations during pregnancy in normal and drug-addicted women and their newborn. J. Clin. Endocrinol. Metab., 57 537–43.

    Article  CAS  PubMed  Google Scholar 

  • Pasternak, G.W., Gintzler, A.R., Houghton, R.A. et al. (1983) Biochemical and pharmacological evidence for opioid receptor multiplicity in the central nervous system. Life Sci., 33 (Supp11),167.

    Article  CAS  PubMed  Google Scholar 

  • Perlmutter, J.F. (1974) Heroin addiction and pregnancy. Obstet. Gynecol. Surv., 29 439–46.

    Article  CAS  PubMed  Google Scholar 

  • Perry, D.C., Rosenbaum, J.S. and Sadee, W. (1982) In vitro binding of [3H]etorphine in morphine-dependent rats. Life Sci., 311405–8.

    Article  CAS  PubMed  Google Scholar 

  • Pert, C.B., Pasternak, G. and Snyder, S.H. (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science, 182 1359–61.

    Article  CAS  PubMed  Google Scholar 

  • Pert, C.B. and Snyder, S.H. (1973) Opiate receptor demonstration in nervous tissue. Science,179 1011–14.

    Article  CAS  PubMed  Google Scholar 

  • Petrillo, P., Tavani, A., Verotta, D. et al. (1987) Differential postnatal development of mu-, delta-and kappa-opioid binding sites in rat brain. Brain Res., 428 53–8.

    CAS  PubMed  Google Scholar 

  • Provost, N.M., Somers, D.E. and Hurley, J.B. (1988) A Drosophila melanogaster G protein alpha subunit gene is expressed primarily in embryos and pupae. J. Biol. Chem., 26312070–76.

    CAS  PubMed  Google Scholar 

  • Przewlocki, R., Hollt, V., Duka, T. et al. (1979) Long-term morphine treatment decreases endorphin levels in rat brain and pituitary. Brain Res., 174 357–61.

    Article  CAS  PubMed  Google Scholar 

  • Ragavan, V.V., Wardlaw, S.L., Kreek, M.J. and Frantz, A.G. (1983) Effect of chronic naltrexone and methadone administration on brain immunoreactive beta-endorphin in the rat. Neuroendocrinology, 37 266–8.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, K., Beitner-Johnson, D.B., Krystal, J.H. et al. (1990) Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological and biochemical correlates. J. Neurosci., 10 2308–17.

    CAS  PubMed  Google Scholar 

  • Rech, R.H., Lomuscio, G. and Algeri, S. (1980) Methadone exposure in utero: effects on brain biogenic amines and behavior. Neurobehay. Toxicol., 2 75–8.

    CAS  Google Scholar 

  • Redmond, D.E. and Krystal, J.H. (1984) Multiple mechanisms of withdrawal from opioid drugs. Annu. Rev. Neurosci., 7 443–78.

    Article  CAS  PubMed  Google Scholar 

  • Rementeria, J.L. and Lotongkhum, K. (1977) The fetus of the drug-addicted woman: conception, fetal wastage, and complications, in Drug Abuse in Pregnancy and Neonatal Effects (ed. J.L. Rementeria), Mosby, St Louis, MO, pp. 1–18.

    Google Scholar 

  • Rothman, R.B., Danks, J.A., Jacobson, A.E. et al. (1986) Morphine tolerance increases g-noncompetitive binding sites. Eur. J. Pharmacol., 124, 113–19.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, L., Ehrlich, S. and Finnegan, L. (1987) Cocaine abuse in pregnancy: effects on the fetus and newborn. Neurotoxicol. Teratol., 9, 295–9.

    Article  CAS  PubMed  Google Scholar 

  • Sakellaridis, N. and Vernadakis, A. (1987) The chick embryo vs. neural tissue culture as models for the study of opiate neurotoxicity in development, in Model Systems in Neurotoxicology: Alternative Approaches to Animal Testing (eds A. Shahar and A.M. Goldberg), Alan R. Liss, New York, pp. 85–100.

    Google Scholar 

  • Schoffelmeer, A.N.M., Hansen, H.A., Stoff, J.C. and Mulder, A.H. (1986) Blockade of D-2 dopamine receptors strongly enhances the potency of enkephalins to inhibit dopamine-sensitive adenylate cyclase in rat neostriatum: involvement of delta-and mu-opioid receptors. J. Neurosci., 6, 2235–9.

    CAS  PubMed  Google Scholar 

  • Schulz, R., Wuster, M. and Herz, A. (1979) Supersensitivity to opioids following the chronic blockade of endorphin action by naloxone. Naunyn Schmiedebergs Arch. Pharmacol., 306, 93–6.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, J.P. (1988) Chronic exposure to opiate agonists increases proenkephalin biosynthesis in NG108 cells. Mol. Brain Res., 3,141–6.

    Article  CAS  Google Scholar 

  • Shani, J., Azov, R. and Weissman, B.A. (1979) Enkephalin levels in rat brain after various regimens of morphine administration. Neurosci. Lett., 12, 319–22.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S.K., Klee, W.A. and Nirenberg, M. (1975a) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc. Natl. Acad. Sci. USA, 72, 590–4.

    Article  CAS  Google Scholar 

  • Sharma, S.K., Nirenberg, M. and Klee, W.A. (1975b) Morphine receptors as regulators of adenylate cyclase activity. Proc. Natl. Acad. Sci. USA, 72, 3092–6.

    Article  CAS  Google Scholar 

  • Sharma, S.K., Klee, W.A. and Nirenberg, M. (1977) Opiate-dependent modulation of adenylate cyclase. Proc. Natl. Acad. Sci. USA, 74, 3365–3369.

    Article  CAS  PubMed  Google Scholar 

  • Shen, K.F. and Crain, S.M. (1989) Dual opioid modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res., 491, 227–42.

    Article  CAS  PubMed  Google Scholar 

  • Shen, K.F. and Crain, S.M. (1990) Cholera toxin-A subunit blocks opioid excitatory effects on sensory neuron action potentials indicating mediation by G5-linked opioid receptors. Brain Res., 525, 225–31.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, S., Kitayama, S., Lin, C.L. et al. (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science, 254, 576–8.

    Article  CAS  PubMed  Google Scholar 

  • Sibley, D.R., and Lefkowitz, R.J. (1985) Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature, 317,124–9.

    Article  CAS  PubMed  Google Scholar 

  • Simantov, R., Levy, R. and Baram, D. (1982a) Down-regulation of enkephalin (delta) receptors - demonstration in membrane-bound and solubilized receptors. Biochim. Biophys. Acta, 721, 478–84.

    Article  CAS  Google Scholar 

  • Simantov, D., Baram, D., Levy, R. and Hadler, H. (1982b) Enkephalins and a-adrenergic receptors: evidence for both common and differentiable regulatory pathways and down-regulation of the enkephalin receptor. Life Sci., 31,1323–6.

    Article  CAS  Google Scholar 

  • Simon, E.J. and Hiller, J.M. (1978) In vitro studies on opiate receptors and their ligands. Fed. Proc., 37,141–6.

    CAS  PubMed  Google Scholar 

  • Sivam, S.P. (1989) Cocaine selectively increases striatonigral dynorphin levels by a dopaminergic mechanism. J. Pharmacol. Exp. Ther., 250, 818–24.

    CAS  PubMed  Google Scholar 

  • Slotkin, T.A. and Anderson, T.R. (1975) Sympathoadrenal development in perinatally addicted rats. Addict. Dis. Int. J., 2, 243–305.

    Google Scholar 

  • Slotkin, T.A., Weigle, S.J., Whitmore, W.L. and Seidler, F.J. (1982) Maternal methadone administration: deficient in development of alpha-noradrenergic responses in developing rat brain as assessed by norepinephrine stimulation of 33Pí incorporation into phospholipids in vivo. Biochem. Pharmacol., 31, 1899–902.

    Article  CAS  PubMed  Google Scholar 

  • Smiley, P.L., Johnson, M., Bush, L. et al. (1990) Effects of cocaine on extrapyramidal and limbic dynorphin systems. J. Pharmacol. Exp. Ther., 253, 938–43.

    CAS  PubMed  Google Scholar 

  • Smith, R.F., Mattran, K.M., Kurkjian, M.F. and Kurtz, S.L. (1989) Alterations in offspring behavior induced by chronic prenatal cocaine dosing. Neurotoxicol. Teratol., 11, 35–8.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, S.H. (1984) Characterization of opiate binding sites. Science, 224, 22–5.

    Article  CAS  PubMed  Google Scholar 

  • Spain, J.W., Roth, B.L. and Coscia, C.J. (1985) Differential ontogeny of multiple opioid receptors (mu, delta, and kappa). J. Neurosci., 5, 584–8.

    CAS  PubMed  Google Scholar 

  • Spear, L.P., Kirstein, C.L. and Frambes, N.A. (1989) Cocaine effects on the developing central nervous system: behavioral, psychopharmacological and neurochemical studies. Ann. NY Acad. Sci., 562, 290–307.

    Article  CAS  PubMed  Google Scholar 

  • Steece, K.A., DeLeon-Jones, F.A., Meyerson, L.R. et al. (1986) In vivo downregulation of rat striatal opioid receptors by chronic enkephalin. Brain Res. Bull., 17, 255–7.

    Article  CAS  PubMed  Google Scholar 

  • Steketee, J.D., Striplin, C.D., Murray, T.F. and Kalivas, P.W. (1991) Possible role for G-proteins in behavioral sensitization to cocaine. Brain Res., 545 287–91.

    Article  CAS  PubMed  Google Scholar 

  • Sternwies, P.C. (1986) The purified alpha subunits of Go and Gi, from bovine brain require beta gamma for association with phospholipid vesicles. J. Biol. Chem., 261 631–7.

    Google Scholar 

  • Strauss, M.E., Andresko, M., Stryker, J.C. et al. (1974) Methadone maintenance during pregnancy: pregnancy, birth and neonate characteristics. Am. J. Obstet. Gyneco1.,120 895–900.

    CAS  Google Scholar 

  • Stryer, L. (1986) Cyclic GMP cascade of vision. Annu. Rev. Neurosci., 9 87–119.

    Article  CAS  PubMed  Google Scholar 

  • Tang, A.H. and Collins, R.J. (1978) Enhanced analgesic effects of morphine after chronic administration of naloxone in the rat. Eur. J. Pharmacol., 47 473–4.

    Article  CAS  PubMed  Google Scholar 

  • Tao, P.L., Law, P.Y. and Loh, H.H. (1987) Decrease in delta and mu opioid receptor binding capacity in rat brain after chronic etorphine treatment. J. Pharmacol. Exp. Ther., 240 809–16.

    CAS  PubMed  Google Scholar 

  • Tao, P.L., Chang, L.R., Law, P.Y. and Loh, H. H. (1988) Decrease in delta-receptor density in rat brain after chronic (n-Ala1, D-Leu5) enkephalin treatment. Brain Res., 462 313–20.

    Article  CAS  PubMed  Google Scholar 

  • Tavani, A., Robson, L. and Kosterlitz, H.W. (1985) Differential postnatal development of mu, delta, and kappa opioid binding sites in mouse brain. Dev. Brain Res., 23 306–9.

    Article  CAS  Google Scholar 

  • Tempel, A. (1991) Visualization of opiate receptor downregulation following morphine treatment in neonatal rat brain. Dev. Brain Res., 6419–26.

    Article  CAS  Google Scholar 

  • Tempel, A., Gardner, E.L. and Zukin, R.S. (1984) Visualization of opiate receptor upregulation by light microscopy autoradiography. Proc. Natl. Acad. Sci. USA, 81 3893–7.

    Article  CAS  PubMed  Google Scholar 

  • Tempel, A., Gardner, E.L. and Zukin, R.S. (1985) Neurochemical and functional correlates of naltrexone-induced opiate receptor up-regulation. J. Pharmacol. Exp. Ther., 232 439–44.

    CAS  PubMed  Google Scholar 

  • Tempel, A., Crain, S.M., Peterson, E.R. et al. (1986) Antagonist-induced opiate receptor upregulation in cultures of fetal mouse spinal cord-ganglion explants. Brain Res., 390 287–91.

    Article  CAS  PubMed  Google Scholar 

  • Tempel, A., Habas J., Paredes, W. and Barr, G.A. (1988) Morphine-induced downregulation of.topioid receptors in neonatal rat brain. Dev. Brain Res., 41129–33.

    Article  Google Scholar 

  • Tempel, A., Kessler, J.A. and Zukin, R.S. (1990) Chronic naltrexone treatment increases expression of preproenkephalin and preprotachykinin mRNA in discrete brain regions. J. Neurosci., 10, 741–7.

    CAS  PubMed  Google Scholar 

  • Townsend, R.R., Laing, F.C. and Jeffrey, R.B. (1988) Placental abruption associated with cocaine abuse. Am. J. Roentgeno1.,150,1339–40.

    CAS  Google Scholar 

  • Traber, J., Gullis, R. and Hamprecht, B. (1975) Influence of opiates on the levels of adenosine 3’:5’-cyclic monophosphate in neuroblastoma X glioma hybrid cells. Life Sci., 16 1863–8.

    Article  CAS  PubMed  Google Scholar 

  • Tsang, D. and Ng, S.C. (1980) Effect of antenatal exposure to opiates on the development of opiate receptors in rat brain. Brain Res., 188 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Tsang D., Tan, A.T., Henry, J.L. and Lal, S. (1978) Effect of opioid peptides on L-noradrenalinestimulated cyclic AMP formation in homogenates of rat cerebral cortex and hypothalamus. Brain Res., 152 521–7.

    Article  CAS  PubMed  Google Scholar 

  • Uhl, G.R., Ryan, J.P. and Schwartz, J.P. (1988) Morphine alters preproenkephalin gene expression. Brain Res., 459 391–7.

    Article  CAS  PubMed  Google Scholar 

  • Valencia, G., McCalla, S., da Silva, M. et al. (1989) Epidemiology of cocaine use during pregnancy at Kings County Hospital Center (KCHC). Pediatr. Res., 25 265A.

    Google Scholar 

  • Van Vliet, J., Wardeh, G., Mulder, A.H. and Schoffelmeer, A.N.M. (1991) Reciprocal effects of chronic morphine administration on stimulatory and inhibitory G-protein subunits in primary cultures of rat striatal neurons. Eur. J. Pharmacol., 208 341–2.

    Article  PubMed  Google Scholar 

  • Watanabe, Y., Shibuya, T., Salafsky, B. and Hill, H.F. (1983) Prenatal and postnatal exposure to diazepam: effects on opioid receptor binding in rat brain cortex. Eur. J. Pharmacol., 96141–4.

    Article  CAS  PubMed  Google Scholar 

  • Weber, E., Evans, E.J. and Barchas, J.D. (1983) Multiple endogenous ligands for opioid receptors. Trends Neurosci., 6, 333.

    Article  CAS  Google Scholar 

  • Weiner, N. (1974) Neurotoxicity of opiates during brain development, in Drugs and the Developing Brain (eds A. Vernadakis and N. Weiner), Plenum Press, New York, pp. 215–27.

    Google Scholar 

  • Wesche, D., Hollt, V. and Herz, A. (1977) Radio-immunoassay of enkephalins. Regional distribution in rat brain after morphine treatment and hypophysectomy. Naunyn-Schmiedebergs Arch. Pharmacol., 301 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Wuster, M., Costa, T. and Gramsch, C.H. (1983) Uncoupling of receptors is essential for opiate-induced desensitization (tolerance) in neuro-blastoma x glioma hybrid cells NG108–15. Life Sci., 33 108–15.

    Article  PubMed  Google Scholar 

  • Yoburn, B.C., Goodman, R.G., Cohen, A.C. et al. (1985) Increased analgesic potency of morphine and increased brain opioid binding sites in the rat following chronic naltrexone treatment. Life Sci., 36 2325–9.

    Article  CAS  PubMed  Google Scholar 

  • Yoburn, B.C., Kreuscher, S.P., Inturrisi, C.E. and Sierra, V. (1989) Opioid receptor up-regulation and supersensitivity in mice: effect of morphine sensitivity. Pharmacol. Biochem. Behay., 32, 727–31.

    Article  CAS  Google Scholar 

  • Yoshikawa, K. and Sabol, S.L. (1986) Glucocorticoids and cyclic AMP synergistically regulate the abundance of preproenkephalin messenger RNA in neuroblastoma-glioma hybrid cells. Biochem. Biophys. Res. Commun.,139, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Young, W.S. and Kuhar, M.J. (1979) A new method for receptor autoradiography: [3H] opioid receptors in rat brain. Brain Res.,179, 255–70.

    Article  CAS  PubMed  Google Scholar 

  • Zagon, I.S. and McLaughlin, P.J. (1977) The effect of chronic morphine administration on pregnant rats and their offspring. Pharmacology,15, 302–10.

    Article  CAS  PubMed  Google Scholar 

  • Zagon, I.S., McLaughlin, P.J., Weaver, D.J. and Zagon, E. (1982) Opiates, endorphins, and the developing organism: a comprehensive bibliography. Neurosci. Biobehay. Rev., 6, 439–79.

    Article  CAS  Google Scholar 

  • Zukin, R.S. and Zukin, S.R. (1988) The sigma receptor, in The Opiate Receptors (ed. G.W. Pasternak), Humana Press, Clifton, NJ, pp. 143–63.

    Google Scholar 

  • Zukin, R.S., Sugarman, J.R., Fitz-Syaga, M.L. et al. (1982) Naltrexone-induced opiate receptor super-sensitivity. Brain Res.,245, 285–92.

    Article  CAS  PubMed  Google Scholar 

  • Zukin, R.S., Eghbali, M., Olive, D. et al. (1988) Characterization and visualization of rat and guinea-pig kappa opioid receptors: evidence for kappa, and kappa2 receptors. Proc. Natl. Acad. Sci. USA,85, 4061–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tempel, A. (1993). Opioid Receptors and Peptide System Regulation in the Developing Nervous System. In: Zagon, I.S., McLaughlin, P.J. (eds) Receptors in the Developing Nervous System. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1544-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1544-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4674-9

  • Online ISBN: 978-94-011-1544-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics