Abawi, G.S. and Grogan, R.G. (1975) Source of primary inoculum and effects of temperature and moisture on infection of beans by Whetzelinia sclerotiorum. Phytopathology, 65, 300–9.
CrossRef
Google Scholar
Abd-El Moity, T.H., Papavizas, G.C. and Shatla, M.N. (1982) Induction of new isolates of Trichoderma harzianum tolerant to fungicides and their experimental use for control of white rot of onion. Phytopathology, 72, 396–400.
CrossRef
Google Scholar
Adams, P.B. and Ayers, W.A. (1982) Biological control of Sclerotinia lettuce drop in the field by Sporidesmium sclerotivorum. Phytopathology, 72, 485–8.
CrossRef
Google Scholar
Adams, P.B., Marois, J.J. and Ayers, W.A. (1984) Population dynamics of the mycoparasite Sporidesmium sclerotivorum, and its host, Sclerotinia minor, in soil. Soil Biology and Biochemistry, 16, 627–33.
CrossRef
Google Scholar
Ahl, P., Voisard, C. and Defago, G. (1986) Iron-bound siderophores, cyanide, and antibiotics involved in suppression of Thielaviopsis basicola by a Pseudomonas fluorescens strain. Journal of Phytopathology, 116, 121–34.
CAS
CrossRef
Google Scholar
Ahmad, J.S. and Baker, R. (1987) Rhizosphere competence of Trichoderma harzianum. Phytopathology, 77, 182–9.
CrossRef
Google Scholar
Ahmed, A.H.M. and Tribe, H.T. (1977) Biological control of white rot of onion (Sclerotium cepivorum) by Coniothyrium minitans. Plant Pathology, 26,75–8.
CrossRef
Google Scholar
Anas, O., Alli, I. and Reeleder, R. D. (1989) Inhibition of germination of Sclerotinia sclerotiorum by salivary gland secretions of Bradysia coprophila. Soil Biology and Biochemistry, 21, 47–57.
CrossRef
Google Scholar
Anderson, T.R. and Patrick, Z.A. (1978) Mycophagous amoeboid organisms from soil that perforate spores of Thielaviopsis basicola and Cochliobolus sativus. Phytopathology, 68, 1618–26.
CrossRef
Google Scholar
Ayers, W.A. and Adams, P.B. (1981) Mycoparasitism and its application to biological control of plant diseases, in Biological Control in Crop Protection, (ed G.C. Papavizas), Allanheld and Osmun, Totowa, NJ, pp.91–103.
Google Scholar
Backman, P.A. and Rodriguez-Kabana, R. (1975) A system for the growth and delivery of biological control agents to the soil. Phytopathology, 65, 819–21.
CrossRef
Google Scholar
Baker, R. and Dunn, P.R.(eds)(1990)New Directions in Biological Control,Alan R. Liss, Inc.,New York.
Google Scholar
Baker, C.J., Stavely, J.R., Thomas, C.A. et al. (1983) Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology, 73, 1148–52.
CrossRef
Google Scholar
Baker, C.J., Stavely, J.R. and Mock, N. (1985) Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease, 69, 770–2.
CrossRef
Google Scholar
Barnes, G.L., Russell, C.C., Foster, W.D. et al. (1981) Aphelenchus avenae, apotential biological control agent for root rot fungi. Plant Disease, 65, 423–4.
CrossRef
Google Scholar
Beagle-Ristaino, J.E. and Papavizas, G.C. (1985) Biological control of Rhizoctonia stem canker and black scurf of potato. Phytopathology, 75, 560–4.
CrossRef
Google Scholar
Becker, J.O. and Cook, R.J. (1988) Role of siderophores in suppression of Pythium species and production of increased-growth response of wheat by fluorescent pseudomonads. Phytopathology,78,778–82.
CAS
CrossRef
Google Scholar
Beemster, A.B.R., Bollen, G.J., Gerlagh, M. et al. (eds) (1991) Biotic Interactions and Soil-Borne Diseases, Elsevier, Amsterdam.
Google Scholar
Blakeman, J.P. and Brodie, I.D.S. (1977) Competition for nutrients between epiphytic micro-organisms and germination of spores of plant pathogens on beetroot leaves. Physiological Plant Pathology, 10, 29–42.
CAS
CrossRef
Google Scholar
Bollen, G.J., Middelkoop, J. and Hofman, T.W. (1991) Effects of soil fauna on infection of potato sprouts by Rhizoctonia solani, in Biotic Interactions and Soil-Borne Diseases, (eds A.B.R. Beemster, G.J. Bollen, M. Gerlagh, M.A. Ruissen, B. Schippers and A. Tempel), Elsevier, Amsterdam, pp.27–34.
CrossRef
Google Scholar
Bolton, A.T. (1978) Effects of amending soilless growing medium with soil containing antagonistic organisms on root rot and blackleg of geranium (Pelargonium hortorum) caused by Pythium splendens. Canadian Journal of Plant Science, 58, 379–83.
CrossRef
Google Scholar
Bolton, A.T. (1980) Control of Pythium aphanidermatum in poinsettia in a soilless culture by Trichoderma viride and a Streptomyces sp. Canadian Journal of Plant Pathology, 2, 93–5.
CrossRef
Google Scholar
Broadbent, P., Baker, K.F. and Waterworth, Y. (1971) Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soils. Australian Journal of Biological Sciences, 24, 925–44.
PubMed
CAS
Google Scholar
Buck, K.W. (1988) Control of plant pathogens with viruses and related agents. Philosophical Transactions of the Royal Society, Series B, 318, 295–317.
CrossRef
Google Scholar
Budge, S.P. and Whipps, J.M. (1991) Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce. Plant Pathology, 40, 59–66.
CrossRef
Google Scholar
Burge,M.N.(ed)(1988) Fungi in Biological Control Systems, Manchester University Press, Manchester.
Google Scholar
Callan, N.W., Mathre, D.E. and Miller, J.B. (1990) Bio-priming seed treatment for biological control of Pythium ultimum pre-emergence damping-off in Sh2 sweet corn. Plant Disease, 74, 368–72.
CrossRef
Google Scholar
Carter, M.V. (1983) Biological control of Eutypa armeniacae. 5. Guidelines for establishing routine wound protection in commercial apricot orchards. Australian Journal of Experimental Agriculture and Animal Husbandry, 23, 429–36.
CrossRef
Google Scholar
Carter, M.V. and Perrin, E. (1985) A pneumatic-powered spraying secateur for use in commercial orchards and vineyards. Australian Journal of Experimental Agriculture and Animal Husbandry, 25, 939–42.
CrossRef
Google Scholar
Carter, M.V. and Price, T.V. (1974) Biological control of Eutypa armeniacae. III. A comparison of chemical, biological and integrated control. Australian Journal of Agricultural Research, 25, 105–19.
CAS
CrossRef
Google Scholar
Cates, D. (1990) Biological fungicide closer to market. Agricultural Consultant, August, p. 11.
Google Scholar
Chakraborty, S. and Warcup, J.H. (1985) Reduction of take-all by mycophagous amoebas in pot bioassays, in Ecology and Management of Soilborne Plant Pathogens, (eds C.A. Parker, A.D. Rovira, K.J. Moore, P.T.W. Wong and J.F. Kollmorgen), American Phytopathological Society, St Paul, MN, pp.107–9.
Google Scholar
Chet, I., Harman, G.E. and Baker, R. (1981) Trichoderma hamatum: Its hyphal interactions with Rhizoctonia solani and Pythium spp.Microbial Ecology, 7, 29–38.
CrossRef
Google Scholar
Chet, I., Ordentlich, A., Shapira, R. et al. (1991) Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria, in The Rhizosphere and Plant Growth, (eds D.L. Keister and P.B. Cregan), Kluwer Academic Publishers, Netherlands, pp.229–36.
CrossRef
Google Scholar
Coley-Smith, J.R., Ridout, C.J., Mitchell, C.M. et al. (1991) Control of bottomrot disease of lettuce (Rhizoctonia solani) using preparations of Trichoderma viride, T. harzianum or tolclofos-methyl. Plant Pathology, 40, 359–66.
CrossRef
Google Scholar
Cook, R.J. and Baker, K.F. (1983) The Nature and Practice of Biological Control of Plant Pathogens, The American Phytopathological Society, St Paul, MN, USA.
Google Scholar
Cook, R.J. and Weller, D.M. (1987) Management of take-all in consecutive crops of wheat or barley, in Innovative Approaches to Plant Disease Control, (ed I. Chet), John Wiley and Sons, New York, pp.41–66.
Google Scholar
Corke, A.T.K. and Hunter, T. (1979) Biocontrol of Nectria galligena infection of pruning wounds on apple shoots. Journal of Horticultural Science, 54, 47–55.
Google Scholar
Cullen, D., Berbee, F.M. and Andrews, J.H. (1984) Chaetomium globosum antagonizes the apple scab pathogen, Venturia inaequalis, under field conditions. Canadian Journal of Botany, 62, 1814–18.
CrossRef
Google Scholar
Curl, E.A. (1979) Effects of mycophagous Collembola on Rhizoctonia solani and cotton seedling disease, in Soil-Borne Plant Pathogens, (eds B. Schippers and W. Gams), Academic Press, New York, pp.253–69.
Google Scholar
Curl, E.A., Gudauskas, R.T., Harper, J.D. et al. (1985) Effects of soil insects on populations and germination of fungal propagules, in Ecology and Management of Soilborne Plant Pathogens, (eds C.A. Parker, A.D. Rovira, K.J. Moore, P.T.W. Wong and J.F. Kollmorgen), American Phytopathological Society, St Paul, Minn, pp.20–33.
Google Scholar
Curl, E.A. and Harper, J.D. (1990) Fauna-microflora interactions, in The Rhizosphere, (ed J.M. Lynch), John Wiley and Sons, Chichester, pp.369–88.
Google Scholar
De Cal, A. and Sagasta, E. M. and Melgarejo, P. (1990) Biological control of peach twig blight (Monilinia laxa) with Penicillium frequentans. Plant Pathology, 39, 612–18.
CrossRef
Google Scholar
Defago, G. and Haas, D. (1990) Pseudomonads as antagonists of soilborne plant pathogens: mode of action and genetic analysis. Soil Biochemistry, 6, 249–91.
CAS
Google Scholar
Descalzo, R.C., Rahe, J.E. and Mauza, B. (1990) Comparative efficacy of induced resistance for selected diseases of greenhouse cucumber. Canadian Journal of Plant Pathology, 12, 16–24.
CrossRef
Google Scholar
Dubos, B., Jailloux, F. and Bulit, J. (1982) L’antagonisme microbien dans la lutte contre la pourriture grise de la vigne. Bulletin OEPP, 12, 171–5.
Google Scholar
Elad, Y. and Chet, I. (1987) Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology, 77, 190–5.
CrossRef
Google Scholar
El-Titi, A. and Ulber, B. (1991) Significance of biotic interactions between soil fauna and microflora in integrated arable farming, in Biotic Interactions and Soil-Borne Diseases, (eds A.B.R. Beemster, G.J. Bollen, M. Gerlagh, M.A. Ruissen, B. Schippers and A. Tempel), Elsevier, Amsterdam, pp.1–19.
Google Scholar
Filonow, A.B. and Lockwood, J.L. (1985) Evaluation of several actinomycetes and the fungus Hyphochytrium catenoides as biocontrol agents for Phytophthora root rot of soybean. Plant Disease, 69, 1033–6.
Google Scholar
Fokkema, N.J., den Houter, J.G., Kosterman, Y.J.C. et al. (1979) Manipulation of yeasts on field-grown wheat leaves and their antagonistic effect on Cochliobolus sativus and Septoria nodorum. Transactions of the British Mycological Society, 72, 19–29.
CrossRef
Google Scholar
Fravel, D.R. and Keinath, A.P. (1991) Biocontrol of soilborne plant pathogens with fungi, in The Rhizosphere and Plant Growth, (eds D.L. Keister and P.B. Cregan), Kluwer Academic Publishers, Netherlands, pp.237–43.
CrossRef
Google Scholar
Gardiner, R.B., Jarvis, W.R. and Shipp, J.L. (1990) Ingestion of Pythium spp.by larvae of the fungus gnat Bradysia impatiens (Diptera: Sciaridae). Annals of Applied Biology, 116, 205–12.
CrossRef
Google Scholar
Goldman, G.H., Geremia, R., Van Montagu, M. et al. (1991) Molecular genetics of the biocontrol agents Trichoderma spp., in Biotic Interactions and Soil-BorneDiseases, (eds A.B.R. Beemster, G.J. Bollen, M. Gerlagh, M.A. Ruissen, B. Schippers and A. Tempel), Elsevier, Amsterdam, pp.175–80.
CrossRef
Google Scholar
Grente, J. (1965) Les formes hypovirulents d’Endothia parasitica et les espoirs de lutte contre le chancre du chataigner. Comptes Rendus Hebdomadaires des Seances de l’Academie d’Agriculture de France, 51, 1033–7.
Google Scholar
Grente, J. and Sauret, S. (1969) L’hypovirulence exclusive phenomene original en pathologie vegetale. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences Paris, D268, 2347–50.
Google Scholar
Grosclaude, C. (1974) Le penetration des spores de champignons dans les blessures de taille des arbes fruitiers. Application au cas de la protection biologique vis-à-vis du Stereum purpureum. Revue de Zoologie Agricole et de Pathologie Vegetale, 73, 1–21.
Google Scholar
Gutterson, N.I., Howie, W. and Suslow, T. (1990) Enhancing efficacies of biocontrol agents by use of biotechnology, in New Directions in Biological Control, (eds R. Baker and P. Dunn), A.R. Liss Inc., New York, pp.749–65.
Google Scholar
Hadar, Y., Harman, G.E., Taylor, A.G. et al. (1983) Effects of pregermination of pea and cucumber seeds and of seed treatment with Enterobacter cloacae on rots caused by Pythium spp. Phytopathology, 73, 1322–5.
CrossRef
Google Scholar
Hadar,Y.,Harman,G.E. and Taylor,A.G.(1984) Evaluation of Trichoderma koningii and T.harzianurn from New York soils for biological control of seed rot caused by Pythium spp.Phytopathology, 74, 106–10.
CrossRef
Google Scholar
Hagedorn, C., Gould, W.D. and Bardinelli, T.R. (1989) Rhizobacteria of cotton and their repression of seedling disease pathogens. Applied and Environmental Microbiology 55, 2793–7.
PubMed
CAS
Google Scholar
Hall, R.A. (1982) Control of whitefly Trialeurodes vaporariorum and cotton aphid, Aphis gossypii, in glasshouses by two isolates of the fungus, Verticillium lecanii. Annals of Applied Biology, 101, 1–11.
CrossRef
Google Scholar
Hanlon, R.D.G. (1981) Influence of grazing by Collembola on the activity of senescent fungal colonies grown on media of different nutrient concentration. Oikos, 36, 362–7.
CrossRef
Google Scholar
Harman, G.E. (1991) Seed treatments for biological control of plant disease. Crop Protection, 10, 166–71.
CrossRef
Google Scholar
Harman, G.E., Chet I. and Baker, R. (1980) Trichoderma hamatum effects on seed and seedling disease induced in radish and pea by Pythium spp. or Rhizoctonia solani. Phytopathology, 70, 1167–72.
CrossRef
Google Scholar
Harman, G.E., Eckenrode, C.J. and Webb, D.R. (1978) Alteration of spermosphere ecosystems affecting oviposition by the bean seed fly and attack by soilborne fungi on germinating seeds. Annals of Applied Biology, 90, 1–6.
CrossRef
Google Scholar
Harman, G.E. and Taylor, A.G. (1988) Improved seedling performance by integration of biological control agents at favourable pH levels with solid matrix priming. Phytopathology, 78, 520–5.
CrossRef
Google Scholar
Harman, G.E., Taylor, A.G. and Stasz, T.E. (1989) Combining effective strains of Trichoderma harzianum and solid matrix priming to improve biological seed treatment. Plant Disease, 73, 631–7.
CrossRef
Google Scholar
Hashiba, T. (1987) An improved system for biological control of damping-off by using plasmids in fungi, in Innovative Approaches to Plant Disease Control, (ed I. Chet), Wiley Interscience, New York, pp.337–51.
Google Scholar
Haygood, R.A. and Mazur, A.R. (1990) Evaluation of Gliocladium virens as a biocontrol agent of dollar spot bermudagrass. Phytopathology, 80, 435 (Abstr.).
Google Scholar
Herr, L.J. (1988) Biocontrol of Rhizoctonia crown rot and root rot of sugar beet by binucleate Rhizoctonia spp.and Laetisaria arvalis. Annals of Applied Biology, 113, 107–18.
CrossRef
Google Scholar
Hijwegen, T. (1986) Biological control of cucumber powdery mildew by Tilletiopsis minor. Netherlands Journal of Plant Pathology, 92, 93–5.
CrossRef
Google Scholar
Hornby, D. (ed) (1990) Biological Control of Soil-borne Plant Pathogens. CAB International, Wallingford.
Google Scholar
Howell, C.R. (1982) Effect of Gliocladium virens on Pythium ultimum, Rhizoctoniasolani, and damping-off of cotton seedlings. Phytopathology, 72, 496–8.
CrossRef
Google Scholar
Howell, C.R. (1991) Biological control of Pythium damping-off with seed-coatingpreparations of Gliocladium virens. Phytopathology, 81, 738–41.
CrossRef
Google Scholar
Howell, C.R., Beier, R.C. and Stipanovic, R.D. (1988) Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium pre-emergence damping-off by the bacterium. Phytopathology, 78 1075–8.
CAS
CrossRef
Google Scholar
Howell, C.R. and Stipanovic, R.D. (1980) Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology, 70, 712–15.
CAS
CrossRef
Google Scholar
Howie, W. and Suslow, T. (1986) Effect of antifungal compound biosynthesis on cotton root colonization and Pythium suppression by a strain of Pseudomonas fluorescens and its antifungal minus isogenic mutant. Phytopathology, 76 1069 (Abstr.).
Google Scholar
Huang, H.C. (1980) Control of Sclerotinia wilt of sunflower by hyperparasites. Canadian Journal of Plant Pathology, 7, 26–32.
CrossRef
Google Scholar
Hubbard, J.P., Harman, G.E. and Hadar, Y. (1983) Effect of soilborne Pseudomonas spp.on the biological control agent, Trichoderma hamatum, on pea seeds. Phytopathology, 73, 655–9.
CrossRef
Google Scholar
Hussain, S., Ghaffar, A. and Aslam, M. (1990) Biological control of Macrophomina phaseolina charcoal rot of sunflower and mung bean. Journal of Phytopathology, 130, 157–60.
CrossRef
Google Scholar
Inglis, G.D. and Boland, G.J. (1990) The microflora of bean and rapeseed petals and the influence of the microflora of bean petals on white mold. Canadian Journal of Plant Pathology, 12, 129–34.
CrossRef
Google Scholar
Islam, K.Z. and Nandi, B. (1985) Control of brown spot of rice by Bacillus megaterium. Zeitschri ft fiir pflanzenkrankheiten and pflanzenshutz, 92, 241–6.
Google Scholar
Jackson, A.M., Whipps, J.M. and Lynch, J.M. (1991a) Nutritional studies of four fungi with disease biocontrol potential. Enzyme and Microbial Technology, 13, 456–61.
CAS
CrossRef
Google Scholar
Jackson, A.M., Whipps, J.M. and Lynch, J.M. (1991b) Effects of temperature, pH and water potential on growth of four fungi with disease biocontrol potential. World Journal of Microbiology and Biotechnology,7, 494–501.
CrossRef
Google Scholar
Jackson, A.M., Whipps, J.M. and Lynch, J.M. (1991c) Production, delivery systems, and survival in soil of four fungi with disease biocontrol potential. Enzyme and Microbial Technology, 13, 636–42.
CrossRef
Google Scholar
Jager, G. and Velvis, H. (1985) Biological control of Rhizoctonia solani on potatoes by antagonists. 4. Inoculation of seed tubers with Verticillium biguttatum and other antagonists in field experiments. Netherlands Journal of Plant Pathology, 91, 49–63.
CrossRef
Google Scholar
Janisiewicz, W.J. and Roitman, J. (1988) Biological control of blue and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology, 78, 1697–1700.
CrossRef
Google Scholar
Jarvis, W.R., Shaw, L.A. and Traquair, J.A. (1989) Factors affecting antagonism of cucumber powdery mildew by Stephanoascus flocculosus and S. rugulosus. Mycological Research, 92, 162–5.
CrossRef
Google Scholar
Jones, D., Gordon, A.H. and Bacon, J.S.D. (1974) Co-operative action by endoand exo-β-1 → 3-glucanases from parasitic fungi in the degradation of cell-wall glucans of Sclerotinia sclerotiorum.
Biochemical Journal, 140, 47–55.
PubMed
CAS
Google Scholar
Kaiser, P.A. and Lussenhop, P.J. (1991) Collembolan effects on establishment of vesicular-arbuscular mycorrhizae in soybean (Glycine max).
Soil Biology and Biochemistry, 23, 307–8.
CrossRef
Google Scholar
Kaiser, W.J., Hannan, R.M. and Weller, D.M. (1989) Biological control of seedrot and preemergence damping-off of chickpea with fluorescent pseudomonads. Soil Biology and Biochemistry, 21, 269–73.
CrossRef
Google Scholar
Kanangaratnam, P., Hall, R.A. and Burges, H.D. (1982) Control of glasshouse whitefly, Trialeurodes vaporariorum by an ‘aphid’ strain of the fungus Verticilhum lecanii. Annals of Applied Biology, 100, 213–19.
CrossRef
Google Scholar
Keel, C., Voisard, C., Berling, H. et al. (1989) Iron sufficiency, a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions. Phytopathology, 79, 584–9.
CrossRef
Google Scholar
Kessler, K.J. (1990) Destruction of Gnomia leptostyla perithecia on Juglans nigra leaves by microarthropods associated with Elacagnus umbellata litter. Mycologia, 82, 387–90.
CrossRef
Google Scholar
Koltin, Y., Finkler, A. and Ben-Zvi, B.-S. (1987) Double-stranded RNA viruses of pathogenic fungi: virulence and plant protection, in Fungal Infection of Plants, (eds G.F. Pegg and P.G. Ayres), Cambridge University Press, Cambridge, pp.334–48.
Google Scholar
Landenpera, M.-L., Simon, E. and Uoti, J. (1991) Mycostop — a novel biofungicide based on Streptomyces bacteria, in Biotic Interactions and Soil-Borne Diseases, (eds A.B.R. Beemster, G.J. Bollen, M. Gerlagh, M.A. Ruissen, B. Schippers and A. Tempel), Elsevier, Amsterdam, pp.258–63.
CrossRef
Google Scholar
Lartey, R.T., Curl, E.A. and Peterson, C.M. (1986) Compared biological control of Rhizoctonia solan; by fungal agents and mycophagous Collembola. Phytopathology, 76, 1104.
Google Scholar
Lartey, R.T., Curl, E.A., Peterson, C.M. et al. (1989) Mycophagous grazing and food preference of Proisotoma minuta (Collembola: Isotomidae) and Onychiurus encarpatus (Collembola: Onychiuridae). Environmental Entomology, 18, 334–7.
Google Scholar
Lartey, R.T., Curl, E.A., Peterson, C.M. et al. (1991) Control of Rhizoctonia solani and cotton seedling disease by Laetisaria arvalis and a mycophagous insect Proisotoma minuta (Collembola). Journal of Phytopathology, 133, 89–98.
CrossRef
Google Scholar
Lewis, J.A. and Papavizas, G.C. (1987a) Reduction of inoculum of Rhizoctonia solani in soil by germlings of Trichoderma hamatum. Soil Biology and Biochemistry, 19, 195–201.
CrossRef
Google Scholar
Lewis, J.A. and Papavizas, G.C. (1987b) Application of Trichoderma and Gliocladium in alginate pellets for control of Rhizoctonia damping-off. Plant Pathology, 36, 438–46.
CrossRef
Google Scholar
Lewis, J.A. and Papavizas, G.C. (1991a) Biocontrol of plant diseases: the approach for tomorrow. Crop Protection, 10, 95–105.
CrossRef
Google Scholar
Lewis, J.A. and Papavizas, G.C. (1991b) Biocontrol of cotton damping-off caused by Rhizoctonia solani in the field with formulations of Trichoderma spp.and Gliocladium virens. Crop Protection, 10, 396–402.
CrossRef
Google Scholar
Lewis, J.A., Papavizas, G.C. and Lumsden, R.D. (1991) A new formulation system for the application of biocontrol fungi to soil. Biocontrol Science and Technology, 1, 59–69.
Google Scholar
Lewis, K., Whipps, J.M. and Cooke, R.C. (1989) Mechanisms of biological disease control with special reference to the case study of Pythium oligandrum as an antagonist, in Biotechnology of Fungi for Improving Plant Growth, (eds J.M. Whipps and R.D. Lumsden), Cambridge University Press, Cambridge, pp.191–217.
Google Scholar
Lifschitz, R., Windham, M.T. and Baker, R. (1986) Mechanism of biological control of pre-emergence damping-off of pea by seed treatment with Trichoderma spp.Phytopathology, 76, 720–5.
CrossRef
Google Scholar
Loper, J.E. (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology, 78, 166–72.
CAS
CrossRef
Google Scholar
Lumsden, R.D. and Lewis, J.A. (1989) Biological control of soilborne plant pathogens, problems and progress, in Biotechnology of Fungi for Improving Plant Growth, (eds J.M. Whipps and R.D. Lumsden), Cambridge University Press, Cambridge, pp.171–90.
Google Scholar
Lumsden, R.D. and Locke, J.C. (1989) Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani with Gliocladium virens in soilless mix. Phytopathology, 79, 361–6.
CrossRef
Google Scholar
Lumsden, R.D., Locke, J.C., Lewis, J.A. et al. (1990) Evaluation of Gliocladium virens for biocontrol of Pythium and Rhizoctonia damping-off of bedding plants. Biological and Cultural Tests, 5, 90.
Google Scholar
Lutchmeah, R.S. and Cooke, R.C. (1985) Pelleting of seed with the antagonist Pythium oligandrum for biological control of damping-off. Plant Pathology, 34, 528–31.
CrossRef
Google Scholar
Lynch, J.M. (1990) Microbial metabolites, in The Rhizosphere, (ed J.M. Lynch), John Wiley and Sons, Chichester, pp.177–206.
Google Scholar
Lynch, J.M. (1992) Environmental implications for the release of biocontrol agents, in Biological Control of Plant Diseases: Progress and Challenges for the Future, (eds E.C. Tjamos, G.C. Papavizas and R.J. Cook), Plenum, New York, pp.389–97.
Google Scholar
Maplestone, P.A., Whipps, J.M. and Lynch, J.M. (1991) Effect of peat-bran inoculum of Trichoderma species on biological control of Rhizoctonia solani. Plant and Soil, 136, 257–63.
CrossRef
Google Scholar
Marois, J.J., Johnston, S.A., Dunn, M.T. et al. (1982) Biological control of Verticillium wilt of eggplant in the field. Plant Disease, 66, 1166–8.
CrossRef
Google Scholar
Martin, S.B., Abawi, G.S. and Hoch, H.C. (1986) The relation of population densities of the antagonist, Laetisaria arvalis, to seedling diseases of table beet incited by Pythium ultimum. Canadian Journal of Microbiology, 32, 156–9.
CrossRef
Google Scholar
Martin, F.N. and Hancock, J.G. (1987) The use of Pythium oligandrum for biological control of preemergence damping-off caused by P. ultimum. Phytopathology, 77, 1013–20.
CrossRef
Google Scholar
Matta, A. and Garibaldi, A. (1977) Control of Verticillium wilt of tomato by preinoculation with avirulent fungi. Netherlands Journal of Plant Pathology, 83, (Suppl. 1), 457–62.
CrossRef
Google Scholar
Mcllveen, W.D. and Cole, H. (1976) Spore dispersal of Endogonaceae by worms, ants, wasps and birds. Canadian Journal of Botany, 54, 1486–9.
CrossRef
Google Scholar
McQuilken, M.P., Whipps, J.M. and Cooke, R.C. (1990a) Oospores of the biocontrol agent Pythium oligandrum bulk-produced in liquid culture. Mycological Research, 94, 613–16.
CrossRef
Google Scholar
McQuilken, M.P., Whipps, J.M. and Cooke, R.C. (1990b) Control of damping-off in cress and sugar beet by commercial seed coating with Pythium oligandrum. Plant Pathology, 39, 452–62.
CrossRef
Google Scholar
McQuilken, M.P., Whipps, J.M. and Cooke, R.C. (1992a) Nutritional and environmental factors affecting biomass and oospore production of the bicontrol agent Pythium oligandrum. Enzyme and Microbial Technology, 14, 106111.
Google Scholar
McQuilken, M.P., Whipps, J.M. and Cooke, R.C. (1992b) Use of oospore formulations of Pythium oligandrum for biological control of Pythium damping-off in cress. Journal of Phytopathology, 135, 125–34.
CrossRef
Google Scholar
Mihuta-Grimm, L. and Rowe, R.C. (1986) Trichoderma spp.as biocontrol agents of Rhizoctonia damping-off of radish in organic soil and comparison of four delivery systems. Phytopathology, 76, 306–12.
CrossRef
Google Scholar
Mitchell, R. and Hurwitz, E. (1965) Suppression of Pythium debaryanum by lytic rhizosphere bacteria. Phytopathology, 55, 156–8.
Google Scholar
Moody, A.R. and Gindrat, D. (1977) Biological control of cucumber black root rot by Gliocladium roseum. Phytopathology, 67, 1159–62.
CrossRef
Google Scholar
Morrall, R.A.A. and Dueck, J. (1982) Epidemiology of Sclerotinia stem rot of rapeseed in Saskatchewan. Canadian Journal of Plant Pathology, 4, 161–8.
CrossRef
Google Scholar
Nelson, E.B. (1988) Biological control of Pythium seed rot and pre-emergence damping-off of cotton with Enterobacter cloacae and Erwinia herbicola applied as seed treatments. Plant Disease, 72, 140–2.
Google Scholar
Nelson, E.B., Chao, W.-L., Norton, J.M. et al. (1986) Attachment of Enterobacter cloacae to hyphae of Pythium ultimum: possible role in biological control of Pythium pre-emergence damping-off. Phytopathology, 76, 327–35.
CrossRef
Google Scholar
Nelson, E.B. and Craft, C.M. (1991) Introduction and establishment of strains of Enterobacter cloacae in golf course turf for the biological control of dollar spot. Plant Disease, 75, 510–14.
CrossRef
Google Scholar
Nelson, E.B., Harman, G.E. and Nash, G.T. (1988) Enhancement of Trichoderman duced biological control of Pythium seed rot and pre-emergence damping-off of peas. Soil Biology and Biochemistry, 20, 145–50.
CAS
CrossRef
Google Scholar
Newhouse, J.R., MacDonald, W.L. and Hoch, H.C. (1990) Virus-like particles in hyphae and conidia of European hypovirulent (dsRNA-containing) strains of Cryphonectria parasitica. Canadian Journal of Botany, 68, 90–101.
CAS
CrossRef
Google Scholar
Ogawa, K. and Komada, H. (1985) Biological control of Fusarium wilt of sweet potato with cross-protection by non-pathogenic Fusarium oxysporum, in Ecology and Management of Soilborne Plant Pathogens, (eds C.A. Parker, A.D. Rovira, K.J. Moore, P.T.W. Wong and J.F. Kollmorgen), American Phytopathological Society, St Paul, Minn, pp.121–3.
Google Scholar
Osburn, R.M. and Schroth, M.N. (1989) Effect of osmopriming sugar beet seed on germination rate and incidence of Pythium ultimum damping-off. Plant Disease, 73, 21–4.
CrossRef
Google Scholar
Osburn, R.M., Schroth, M.N., Hancock, J.G. et al. (1989) Dynamics of sugar beet colonization by Pythium ultimum and Pseudomonas species: Effects on seed rot and damping-off. Phytopathology, 79, 709–16.
CrossRef
Google Scholar
Papavizas, G.C. and Lewis, J.A. (1983) Physiological and biocontrol characteristics of stable mutants of Trichoderma viride resistant to MBC fungicides. Phytopathology, 73, 407–11.
CAS
CrossRef
Google Scholar
Papavizas, G.C. and Lewis, J.A. (1989) Effect of Gliocladium and Trichoderma on damping-off and blight of snapbean caused by Sclerotium rolfsii. Plant Pathology, 38, 227–86.
CrossRef
Google Scholar
Parke, J.L., Rand, R.E., Joy, A.E. et al. (1991) Biological control of Pythium damping-off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or P. fluorescens to seed. Plant Disease, 75, 987–92.
CrossRef
Google Scholar
Paulitz, T.C., Ahmad, J.S. and Baker, R. (1990) Integration of Pythium nunn and Trichoderma harzianum isolate T-95 for the biological control of Pythium damping-off of cucumber. Plant and Soil, 121, 243–50.
CrossRef
Google Scholar
Paulitz, T.C. and Loper, J.E. (1991) Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology, 81, 930–5.
CrossRef
Google Scholar
Pe’er, S. and Chet, I. (1990) Trichoderma protoplast fusion: a tool for improving biocontrol agents. Canadian Journal of Microbiology, 36, 6–9.
CrossRef
Google Scholar
Purkayastha, R.P. and Bhattacharyya, B. (1982) Antagonism of microorganisms from jute phylloplane towards Colletotrichum corchori. Transactions of the British Mycological Society, 78, 509–13.
CrossRef
Google Scholar
Pusey, P.L. (1989) Use of Bacillus subtilis and related organisms as biofungicides. Pesticide Science, 27, 133–40.
CrossRef
Google Scholar
Pusey, P.L., Wilson, C.L., Hotchkiss, M.W. et al. (1986) Compatibility of Bacillus subtilis for postharvest control of peach brown rot with commercial fruit waxes, dicloran and cold-storage conditions. Plant Disease, 70, 587–90.
CrossRef
Google Scholar
Rabatin, S.C. and Stinner, B.R. (1988) Indirect effects of interactions between VAM fungi and soil-inhabiting invertebrates on plant processes. Agriculture, Ecosystems and Environment, 24, 135–46.
CrossRef
Google Scholar
Redmond, J.C., Marois, J.J. and MacDonald, J.D. (1987) Biological control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Disease, 71, 799 —802.
CrossRef
Google Scholar
Reyes, A.A. and Dirks, V.A. (1985) Suppression of Fusarium and Pythium pea rot by antagonistic microorganisms. Phytoprotection, 66, 23–9.
Google Scholar
Rhoades, H.L. and Linford, M.B. (1959) Control of Pythium root rot by the nematode Aphelenchus avenae. Plant Disease Reporter, 43, 323–8.
Google Scholar
Rishbeth, J. (1963) Stump protection against Fomes annosus. III. Inoculation with Peniophora gigantea. Annals of Applied Biology, 52, 63–77.
CrossRef
Google Scholar
Rossner, J. and Nagel, S. (1984) Untersuchungen zur Okologie and vermehrung des mycohagen nematoden Aphelenchoides hamatus. Nematologica, 30, 90–8.
CrossRef
Google Scholar
Shapira, R., Ordentlich, A., Chet, I. et al. (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology, 79, 1246–9.
CAS
CrossRef
Google Scholar
Sikora, R.A., Bedenstein, F. and Nicolay, R. (1990a) Einflutg der Behandlung von Riibensaatgut mit Rhizospharebakterien auf den Befall durch Pilze der Gattung Pythium. I. Antagonische Wirkung verschiedener Bakterienisolate gegenuber Pythium spp.Journal of Phytopathology, 129, 111–20.
CrossRef
Google Scholar
Sikora, R.A., Bedenstein, F. and Nicolay, R. (1990b) EinfluE der Behandlung von Rtibensaatgut mit Rhizospharebakterien auf den Befall durch Pilze der Gattung Pythium.
II. Untersuchungen zum Wirkungsmechanismus. Journal of Phytopathology, 129, 121–32.
CrossRef
Google Scholar
Sivan, A., Elad, Y. and Chet, I. (1984) Biological control effects of a new isolate of Trichoderma harzianum on Pythium aphanidermatum.
Phytopathology, 74,498–501.
CrossRef
Google Scholar
Sivan, A. and Harman, G.E. (1991) Improved rhizosphere competence in a protoplast fusion progeny of Trichoderma harzianum. Journal of General Microbiology, 137, 23–9.
CrossRef
Google Scholar
Spencer, D.M. and Atkey, P.T. (1981) Parasitic effects of Verticillium lecanii on two rust fungi. Transactions of the British Mycological Society, 77, 535–42.
CrossRef
Google Scholar
Spurr, H.W., Jr. (1977) Protective applications of conidia of non pathogenic Alternaria sp. isolates for control of tobacco brown spot disease. Phytopathology, 67, 128–32.
CrossRef
Google Scholar
Spurr, H.W. (1981) Experiments on foliar disease control using bacterial antagonists, in Microbial Ecology of the Phylloplane, (ed. J.P. Blakeman), Academic Press, London, pp.369–81.
Google Scholar
Srivastava, A.K., Defago, G. and Kern, H. (1985) Hyperparasitism of Puccinia horiana and other microcylic rusts. Phytopathologische Zeitschrift, 114, 73–8.
CrossRef
Google Scholar
Sundheim,L.and Amundsen, T. (1982) Fungicide tolerance in the hyperparasite Ampelomyces quisqualis and integrated control of cucumber powdery mildew. Acta Agriculturae Scandinavica, 32, 349–55.
CAS
CrossRef
Google Scholar
Sundheim, L., Poplawsky, A.R. and Ellingboe, A.H. (1988) Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Physiological and Molecular Plant Pathology, 33, 483–91.
CAS
CrossRef
Google Scholar
Sztejnberg, A., Galper, S., Mazar, S. et al. (1989) Ampelomyces quisqualis for biological and integrated control of powdery mildews in Israel. Journal of Phytopathology, 124, 285–95.
CAS
Google Scholar
Tahvonen, R. (1982) Preliminary experiments into the use of Streptomyces spp. isolated from peat in the biological control of soil and seed-borne diseases in peat culture. Journal of the Scientific Agricultural Society of Finland, 54, 357–69.
Google Scholar
Taylor, A.G. and Harman, G.E. (1990) Concepts and technologies of selected seed treatments. Annual Review of Phytopathology, 28, 321–39.
CrossRef
Google Scholar
Taylor, A.G., Min, T.-G., Harman, G.E. et al. (1991) Liquid coating formulation for the application of biological seed treatments of Trichoderma harzianum. Biological Control, 1, 16–22.
CrossRef
Google Scholar
Thomashow, L.S. and Weller, D.M. (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. Journal of Bacteriology, 170, 3499–508.
PubMed
CAS
Google Scholar
Thomashow, L.S., Weller, D.M., Bonsall, R.F. et al. (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Applied and Environmental Microbiology, 56, 908–12.
PubMed
CAS
Google Scholar
Thompson, R.J. and Burns, R.G. (1989) Control of Pythium ultimum with antagonistic fungal metabolites incorporated into sugar beet seed pellets. Soil Biology and Biochemistry, 21, 745–8.
CAS
CrossRef
Google Scholar
Trapero-Casas, A., Kaiser, W.J. and Ingram, D.M. (1990) Control of Pythium seed rot and pre-emergence damping-off of chickpea in the US Pacific Northwest and Spain. Plant Disease, 74, 563–9.
CrossRef
Google Scholar
Tronsmo, A. (1991) Biological and integrated controls of Botrytis cinerea on apple with Trichoderma harzianum. Biological Control, 1, 59–62.
CrossRef
Google Scholar
Tronsmo, A. and Dennis, C. (1977) The use of Trichoderma species to control strawberry fruit rots. Netherlands Journal of Plant Pathology, 83, (Supp.1), 449–55.
CrossRef
Google Scholar
Trutmann, P. and Keane, P.J. (1990) Trichoderma koningii as a biological control agent for Sclerotinia sclerotiorum in Southern Australia. Soil Biology and Biochemistry, 22, 43–50.
CrossRef
Google Scholar
Trutmann, P., Keane, P.J. and Merriman, P.R. (1980) Reduction of sclerotial inoculum of Sclerotinia sclerotiorum with Coniothyrium minitans. Soil Biology and Biochemistry, 12, 461–5.
CrossRef
Google Scholar
Trutmann, P., Keane, P.J. and Merriman, P.R. (1982) Biological control of Sclerotinia sclerotiorum on aerial parts of plants by the hyperparasite Coniothyrium minitans. Transactions of the British Mycological Society, 78, 521–9.
CrossRef
Google Scholar
Turhan, G. and Turhan, K. (1989) Suppression of damping-off on pepper caused by Pythium ultimum Trow and Rhizoctonia solani Kiihn by some new antagonists in comparison with Trichoderma harzianum Rifai. Journal of Phytopathology, 126, 175–82.
CrossRef
Google Scholar
Turner, G.J. and Tribe, H.T. (1976) On Coniothyrium minitans and its parasitism of Sclerotinia species. Transactions of the British Mycological Society, 66, 97–104.
CrossRef
Google Scholar
Uma, N.V. and Taylor, G.S. (1987) Parasitism of leek rust urediniospores by four fungi. Transactions of the British Mycological Society, 88, 335–40.
CrossRef
Google Scholar
Utkhede, R.S. and Rahe, J.E. (1980) Biological control of onion white rot. Soil Biology and Biochemistry, 12, 101–4.
CrossRef
Google Scholar
Utkhede, R.S. and Rahe, J.E. (1983) Interactions of antagonist and pathogen in biological control of onion white rot. Phytopathology, 73, 890–3.
CrossRef
Google Scholar
Utkhede, R.S. and Scholberg, P.L. (1986) In vitro inhibition of plant pathogens by Bacillus subtilis and Enterobacter aerogenes and in vivo control of two postharvest cherry diseases. Canadian Journal of Microbiology, 32, 963–7.
CrossRef
Google Scholar
Van Alfen, N.K. and Hansen, D.R. (1984) Hypovirulence, in Plant Microbe Interactions. Molecular and Genetic Perspectives, Volume 1, (eds T. Kosuge and E.W. Nester), MacMillan Publishing Co., New York, pp.400–19.
Google Scholar
Van Peer, R. and Schippers, B. (1991) Biocontrol of Fusarium wilt by Pseudomonas sp. strain WCS417r: induced resistance and phytoalexin accumulation, in Biotic Interactions and Soil-Borne Diseases, (eds A.B.R. Beemster, G.J. Bollen, M. Gerlagh, M.A. Ruissen, B. Schippers and A. Tempel), Elsevier, Amsterdam, pp.274–80.
CrossRef
Google Scholar
Visser, S. (1985) Role of soil invertebrates in determining the composition of soil microbial communities, in Ecological Interactions in Soil: Plants, Microbes and Animalseds A.H. Fitter, D. Atkinson, D.J. Read and M.B. Usher), Blackwell Scientific Publications, Oxford, pp.297–317.
Google Scholar
Voisard, C., Keel, C., Haas, D. et al. (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO Journal, 8, 351–8.
PubMed
CAS
Google Scholar
Warnock, A.J., Fitter, A.H. and Usher, M.B. (1982) The influence of a springtail Folsomia candida (Insecta, Collembola) on the mycorrhizal association of leek Allium porrum and the vesicular-arbuscular mycorrhizal endophyte Glomus fasciculatum. New Phytologist, 90, 285–92.
CrossRef
Google Scholar
Weller, D.M. and Cook, R.J. (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, 73, 463–9.
CrossRef
Google Scholar
Weller, D.M. and Cook, R.J. (1986) Increased growth of wheat by seed treatments with fluorescent pseudomonads, and implications of Pythium control. Canadian Journal of Plant Pathology, 8, 328–34.
CrossRef
Google Scholar
Whipps, J.M. (1991) Effects of mycoparasites on sclerotia-forming fungi, in Biotic Interactions and Soil-Borne Diseases, (eds A.B.R. Beemster, G.J. Bollen, M. Gerlagh, M.A. Ruissen, B. Schippers and A. Tempel), Elsevier, Amsterdam, pp.129–40.
CrossRef
Google Scholar
Whipps, J.M., Lewis, K. and Cooke, R.C. (1988) Mycoparasitism and plant disease control, in Fungi in Biological Control Systems, (ed. M.N. Burge), Manchester University Press, pp.161–87.
Google Scholar
Whipps, J.M. and Lumsden, R.D. (eds) (1989). Biotechnology of Fungi for Improving Plant Growth. Cambridge University Press, Cambridge.
Google Scholar
Whipps, J.M. and Lumsden, R.D. (1991) Biological control of Pythium species. Biocontrol Science and Technology, 1, 75–90.
CrossRef
Google Scholar
Wiggins, E.A. and Curl, E.A. (1979) Interactions of Collembola and microflora of cotton rhizosphere. Phytopathology, 69, 244–9.
CrossRef
Google Scholar
Wilson, C.L., Franklin, J.D. and Pusey, P.L. (1987) Biological control of Rhizopus rot of peach with Enterobacter cloacae. Phytopathology, 77, 303–5.
CrossRef
Google Scholar
Wilson, C.L., Wisniewski, M.E., Biles, C.L. et al. (1991) Biological control of post-harvest diseases of fruits and vegetables: alternatives to synthetic fungicides. Crop Protection, 10, 172–7.
CrossRef
Google Scholar
Wisniewski, M., Wilson, C. and Hershberger, W. (1989) Characterization of inhibition of Rhizopus stolonifera germination and growth by Enterobacter cloacae. Canadian Journal of Botany, 67, 2317–23.
CrossRef
Google Scholar
Wood,R.K.S.and Way, M.J. (eds)(1988) Biological Control of Pests, Pathogens and Weeds:Developments and Prospects. The Royal Society, London.
Google Scholar
Young, C.S. and Andrews, J.H. (1990) Inhibition of pseudothecial development of Venturia inaequalis by the basidiomycete Athelia bombacina in apple leaf litter. Phytopathology, 80, 536–42.
CrossRef
Google Scholar
Zhang, B.X., Ge, Q.X., Chen, D.H. et al., (1990) Biological and chemical control of rot diseases on vegetable seedlings in Zhejiang province, China, in Biological Control of Soil-borne Plant Pathogens, (ed D. Hornby), CAB International, Wallingford, pp. 181–96.
Google Scholar