Advertisement

Immunology of Fungal Infections

  • K. Bayston
  • C. Tang
  • J. Cohen
Part of the Immunology and Medicine Series book series (IMME, volume 25)

Abstract

Fungi are widely distributed in the environment, yet systemic fungal infections occur infrequently in normal individuals. Recently there has been a significant rise in the incidence of opportunistic infections in patients with impaired host defences, in part due to the increasing use of antineoplastic and immunosuppressive agents, and more recently as a consequence of human immunodeficiency virus (HIV) infection. In this chapter we will summarize some general aspects of fungal immunology, and then give a more detailed account of host responses to the important opportunistic and primary pathogenic fungi. Tropical mycoses and dermatophytes have been excluded.

Keywords

Candida Albicans Invasive Aspergillosis Cryptococcus Neoformans Histoplasma Capsulatum Anticandidal Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diamond RD. Fungal surfaces: Effects of interactions with phagocytic cells. Rev Infect Dis. 1988; 10: S428–S431.PubMedCrossRefGoogle Scholar
  2. 2.
    Schaffner A, Davis CE, Schaffner T, Markert M, Douglas H, Braude AI In vitro susceptibility of fungi to killing by neutrophil granulocytes discriminates between primary pathogenicity and opportunism. J Clin Invest. 1986; 78: 511–524.PubMedCrossRefGoogle Scholar
  3. 3.
    Schaffner A, Douglas H, Braude AI. Selective protection against conidia by mononuclear and against mycelia by polymorphonuclear phagocytes in resistance to Aspergillus. J Clin Invest. 1982; 69: 617–631.PubMedCrossRefGoogle Scholar
  4. 4.
    Diamond RD, Krzesicki R. Mechanisms of attachment of neutrophils to Candida albicans pseudohyphae in the absence of serum, and of subsequent damage to pseudohyphae by microbicidal processes of neutrophils in vitro. J Clin Invest. 1978; 61: 360–369.CrossRefGoogle Scholar
  5. 5.
    Diamond RD, Clark RA. Damage to Aspergillus fumigatus and Rhizopus oryzae hyphae by oxidative and non-oxidative microbicidal products of human neutrophils in vitro. Infect Immun. 1982; 38: 487–495.PubMedGoogle Scholar
  6. 6.
    Rogers TJ, Balish E. Immunity to Candida albicans. Microbiol Rev. 1980; 44: 660–682.PubMedGoogle Scholar
  7. 7.
    Waldorf AR. Host-parasite relationship in opportunistic mycoses. CRC Crit Rev Microbiol. 1986; 13: 133–172.CrossRefGoogle Scholar
  8. 8.
    Cole GT, Zhu S, Pan S, Yuan L, Kruse D, Sun SH. Isolation of antigens with proteolytic activity from Coccidioides immitis. Infect Immun 1989; 57: 1524–1534.PubMedGoogle Scholar
  9. 9.
    Resnick S, Pappagianis D, McKerrow JH. Proteinase production by the parasitic cycle of the pathogenic fungus Coccidioides immitis. Infect Immun. 1987; 55: 2807–2815.PubMedGoogle Scholar
  10. 10.
    Salvin SB. Endotoxin in pathogenic fungi. J Immunol. 1952; 69: 89–99.PubMedGoogle Scholar
  11. 11.
    Tilden EB, Hatton EH, Freeman S, Williamson WM, Koenig VL. Preparation and properties of the endotoxins of Aspergillus fumigatus and Aspergillus flavus. Mycopathol Mycol Appl. 1961; 4: 325–346.CrossRefGoogle Scholar
  12. 12.
    Chaudhary B, Singh B. Role of endotoxin of Aspergillus fumigatus in its pathogenicity. Mycosen. 1982; 26: 430–434.CrossRefGoogle Scholar
  13. 13.
    Ray TL, Payne CD. Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect Immun 1988; 56: 1942–1949.PubMedGoogle Scholar
  14. 14.
    Borg M, Ruchel R. Expression of extracellular acid proteinase by proteolytic Candida spp. during experimental infection of oral mucosa. Infect Immun. 1988; 56: 626–631.PubMedGoogle Scholar
  15. 15.
    Waldorf AR, Diamond DR. Aspergillosis and mucormycosis. In: Cox RA, ed. Immunology of the Fungal Diseases. Boca Raton, Florida: CRC Press, 1989; 29–55.Google Scholar
  16. 16.
    Tang CM, Cohen J, Van Noorden S, Krausz T, Holden DW. The alkaline protease of Aspergillus fumigatus is not a virulence determinant in two murine models of invasive pulmonary aspergillosis. Infect Immun. 1993; 61: 1650–1656.PubMedGoogle Scholar
  17. 17.
    Müllbacher A, Waring P, Eichner RD. Identification of an agent in cultures of Aspergillus fumigatus displaying anti-phagocytic and immunomodulating activity in vitro. J Gen Microbiol. 1985; 131: 1251–1258.PubMedGoogle Scholar
  18. 18.
    Eichner RD, Al Salami M, Wood PR, Müllbacher A. The effect of gliotoxin upon macrophage function. Int J Immunopharmacol. 1986; 8: 789–797.PubMedCrossRefGoogle Scholar
  19. 19.
    Robertson MD, Seaton A, Milne LJR, Raeburn JA. Suppression of host defences by Aspergillus fumigatus. Thorax. 1987; 42: 19–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Blackstock R, McCormack J, Hall NK. Induction of a macrophage-suppressive lymphokine by soluble cryptococcal antigens and its association with models of immunologic tolerance. Infect Immun. 1987; 55: 233–239.PubMedGoogle Scholar
  21. 21.
    Piccolella E, Lombardi G, Morelli R. Generation of suppressor cells in the response of human lymphocytes to a polysaccharide from Candida albicans. J Immunol. 1981; 126: 2151–2155.PubMedGoogle Scholar
  22. 22.
    Artz RP, Bullock WE. Immunoregulatory responses in experimental disseminated histoplasmosis: depression of T cell dependent and T effector responses by activation of splenic suppressor cells. Infect Immun. 1979; 23: 893–902.PubMedGoogle Scholar
  23. 23.
    Babior BM. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978; 298: 659–725.PubMedCrossRefGoogle Scholar
  24. 24.
    Spitznagel JK, Shafer WM. Neutrophil killing of bacteria by oxygen-independent mechanisms: A historical summary. Rev Infect Dis. 1985; 7: 398–403.PubMedCrossRefGoogle Scholar
  25. 25.
    Clark RA. The human neutrophil respiratory burst oxidase. J Infect Dis. 1990; 161: 1140 1147.Google Scholar
  26. 26.
    Lehrer RI, Ladra KM, Hake RB. Nonoxidative fungicidal mechanisms of mammalian granulocytes: demonstration of components with candidacidal activity in human, rabbit, and guinea pig leukocytes. Infect Immun 1975; 11: 1226–1234.PubMedGoogle Scholar
  27. 27.
    Clarke RA. The human neutrophil respiratory burst. J Infect Dis. 1990; 161: 1140–1147.CrossRefGoogle Scholar
  28. 28.
    Curnutte JT, Whitten DM, Babior BM. Defective superoxide production by granulocytes from patients with chronic granulomatous disease. N Engl J Med. 1974; 290: 593–597.PubMedCrossRefGoogle Scholar
  29. 29.
    Segal AW. Absence of both cytochrome b245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature. 1987; 326: 88–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Segal AW, Cross AR, Garcia RC, Borregaard N, Valerius NH, Soothill JF, Jones OTG. Absence of cytochrome b245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance. N Engl J Med. 1983; 308: 245–251.PubMedCrossRefGoogle Scholar
  31. 31.
    Johnston RB, Newman SL. Chronic granulomatous disease. Pediatr Clin N Am. 1977; 24: 365–376.Google Scholar
  32. 32.
    Cohen MS, Isturiz RE, Malech HL, Root RK, Wilfert CM, Gutman L, Buckley RH. Fungal infection in chronic granulomatous disease. The importance of the phagocyte in defense against fungi. Am J Med. 1981; 71: 59–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Levitz SM, Selsted ME, Ganz T, Lehrer RI, Diamond RD. In vitro killing of spores and hyphae of Aspergillus fumigatus and Rhizopus oryzae by rabbit neutrophil cationic peptides and bronchoalveolar macrophages. J Infect Dis. 1986; 154: 483–489.PubMedCrossRefGoogle Scholar
  34. 34.
    Waldorf AR. Pulmonary defense mechanisms against opportunistic fungal pathogens. Immunol Ser. 1989; 47: 243–271.PubMedGoogle Scholar
  35. 35.
    Diamond RD, Krzesicki R, Jao W. Damage to pseudohyphal forms of Candida albicans neutrophils in the absence of serum in vitro. J Clin Invest. 1978; 61: 349–359.PubMedCrossRefGoogle Scholar
  36. 36.
    Drutz DJ, Frey CL. Intracellular and extracellular defenses of human phagocytes against Blastomyces dermatididis conidia and yeasts. J Lab Clin Med. 1985; 105: 737–750.PubMedGoogle Scholar
  37. 37.
    Kalina M, Kletter Y, Shahar A, Arouson M. Acid phosphatase release from intact phagocytic cells surrounding a large size parasite. Proc Soc Exp Biol Med. 1971; 136: 407–410.PubMedGoogle Scholar
  38. 38.
    Howard DH. Mechanisms of resistance in the systemic mycoses. In: Nahmia AJ, O’Reilly RJ, eds. Comprehensive Immunology. Immunology of Human Infection Part 1. Bacteria, Mycoplasmae, Chlamydiae and Fungi. New York: Plenum, 1981: 475–494.Google Scholar
  39. 39.
    Cambridge G. Licensed to kill. Br Med J. 1986; 293: 904–905.CrossRefGoogle Scholar
  40. 40.
    Jondal M. The human NK cell–a short overview and an hypothesis on NK recognition. Clin Exp Immunol. 1987; 70: 255–262.PubMedGoogle Scholar
  41. 41.
    Murphy JW, McDaniel DO. In vitro reactivity of natural killer ( NK) cells against Cryptococcus neoformans. J Immunol. 1982; 128: 1577–1583.Google Scholar
  42. 42.
    Hidore MR, Murphy JW. Correlation of natural killer cell activity and clearance of Cryptococcus neoformans from mice after adoptive transfer of splenic nylon wool non-adherent cells. Infect Immun 1986; 51: 547–555.PubMedGoogle Scholar
  43. 43.
    Nabavi N, Murphy JW. Antibody-dependent natural killer cell-mediated growth inhibition of Cryptococcus neoformans. Infect Immun. 1986; 51: 556–562.PubMedGoogle Scholar
  44. 44.
    Miller MF, Mitchell TG, Storkus WJ, Dawson JR. Human natural killer cells do not inhibit growth of Cryptococcus neoformans in the absence of antibody. Infect Immun. 1990; 58: 639–645.PubMedGoogle Scholar
  45. 45.
    Hidore MR, Murphy JW. Natural cellular resistance of beige mice against Cryptococcus neoformans. J Immunol. 1986; 137: 3624–3631.PubMedGoogle Scholar
  46. 46.
    Jimenez BE, Murphy JW. In vitro effects of natural killer cells against Paracoccidioides brasiliensis yeast phase. Infect Immun. 1984; 46: 552–558.PubMedGoogle Scholar
  47. 47.
    Kozel TR, Brown RR Pfrommer GST. Activation and binding of C3 by Candida albicans. Infect Immun. 1987; 55: 1890–1894.PubMedGoogle Scholar
  48. 48.
    Kozel TR, Wilson MA, Farrell TP, Levitz SM. Activation of C3 and binding to Aspergillus fumigatus conidia and hyphae. Infect Immun. 1989; 57: 3412–3417.PubMedGoogle Scholar
  49. 49.
    Calich VLG, Kipnis TL, Mariano M, Neto CF, Da Silva WD. The activation of the complement system by Paracoccidioides brasilensis in vitro; its opsonic effect and possible significance for an in vivo model of infection. Clin Immunol Immunopathol. 1979; 12: 20–30.CrossRefGoogle Scholar
  50. 50.
    Kozel TR, Pfrommer GST. Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect Immun. 1986; 52: 1–5.PubMedGoogle Scholar
  51. 51.
    Griffin FM Jr. Roles of macrophage Fc and C3b receptors in phagocytosis of immunologically coated Cryptococcus neoformans. Proc Natl Acad Sci USA. 1981; 78: 3853–3857.PubMedCrossRefGoogle Scholar
  52. 52.
    Galgiani JN, Yam P, Pretz LD, Williams PL, Stevens DA. Complement activation by Coccidioides immitis: in vitro and clinical studies. Infect Immun 1980; 28: 944–949.PubMedGoogle Scholar
  53. 53.
    Kozel TR, McGaw TG. Opsonization of Cryptococcus neoformans by human immunoglobulin G: role of immunoglobulin G in phagocytosis by macrophages. Infect Immun 1979; 25: 255–261.PubMedGoogle Scholar
  54. 54.
    Diamond RD, May JE, Kane M, Frank MM, Bennett JE. The role of late complement components and the alternate complement pathway in experimental cryptococcosis. Proc Soc Exp Biol Med. 1973; 144: 312–315.PubMedGoogle Scholar
  55. 55.
    Diamond RD, May JE, Kane M, Frank MM, Bennett JE. The role of classical and alternate pathways in host defenses against Cryptococcus neoformans infection. J Immunol. 1974; 112: 2260–2270.PubMedGoogle Scholar
  56. 56.
    Kozel TR, Highison B, Stratton C. Localisation on encapsulated Cryptococcus neoformans of serum components opsonic for phagocytosis by macrophages and neutrophils. Infect Immun. 1984; 43: 574–579.PubMedGoogle Scholar
  57. 57.
    Levitz SM, Dibenedetto DJ. Differential stimulation of murine resident peritoneal cells by selectively opsonized encapsulated and acapsular Cryptococcus neoformans. Infect Immun 1988; 56: 2544–2551.PubMedGoogle Scholar
  58. 58.
    Dromer F, Charreire J, Contrepois A, Carbon C, Yeni P. Protection of mice against experimental cryptococcosis by anti-Cryptococcus neoformans monoclonal antibody. Infect Immun. 1987; 55: 749–752.PubMedGoogle Scholar
  59. 59.
    Sanford JE, Lupan DM, Schlageter AM, Kozel TR. Passive immunization against Cryptococcus neoformans with an isotype-switch family of monoclonal antibodies reactive with cryptococcal polysaccharide. Infect Immun. 1990; 58: 1919–1923.PubMedGoogle Scholar
  60. 60.
    Diamond RD, Bennett JE. Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann Intern Med. 1974; 80: 176–181.PubMedGoogle Scholar
  61. 61.
    Pereira HA, Hosking CS. The role of complement and antibody in opsonization and intracellular killing of Candida albicans. Clin Exp Immunol. 1984; 57: 307–314.PubMedGoogle Scholar
  62. 62.
    Mourad S, Friedman L. Passive immunization of mice against Candida albicans. Sabouraudia. 1968; 6: 103–105.PubMedCrossRefGoogle Scholar
  63. 63.
    Matthews RC, Burnie JP, Howat D, Rowland T, Walton F. Autoantibody to heat-shock protein 90 can mediate protection against systemic candidosis. Immuology. 1991; 74: 20–24.Google Scholar
  64. 64.
    Taschdjian CL, Seelig MS, Kozinn PJ. Serological diagnosis of candidal infections. CRC Crit Rev Clin Lab Sci. 1973; 4: 19–59.PubMedCrossRefGoogle Scholar
  65. 65.
    Matthews RC, Burnie JP, Tabaqchali S. Immunoblot analysis of the serological response in systemic candidiasis. Lancet. 1984; II: 1415–1418.Google Scholar
  66. 66.
    Matthews R, Burnie J, Smith D, Clark I, Midgley J, Conolly M, Gazzard B. Candida and AIDS: evidence for protective antibody. Lancet. 1988; II: 263–266.CrossRefGoogle Scholar
  67. 67.
    Matthews RC, Burnie JP, Tabaqchali S. Isolation of immunodominant antigens from sera of patients with systemic candidiasis and characterization of serological response to Candida albicans. J Clin Microbiol. 1987; 25: 230–237.PubMedGoogle Scholar
  68. 68.
    de Repentigny L. Serological techniques for diagnosis of fungal infection. Eur J Clin Microbiol Infect Dis. 1989; 8: 362–375.PubMedCrossRefGoogle Scholar
  69. 69.
    de Repentigny LS. Serodiagnosis of candidiasis, aspergillosis, and cryptococcosis. Clin Infect Dis. 1992; 14: S11–22.PubMedCrossRefGoogle Scholar
  70. 70.
    Slagle DC, Cox RA, Kuruganti U. Induction of tumor necrosis factor alpha by spherules of Coccidioides immitis. Infect Immun. 1989; 57: 1916–1921.PubMedGoogle Scholar
  71. 71.
    Smith JG, Graybill JR, Williams DM, Ahrens J. A role for tumor necrosis factor ( TNF) in murine histoplasmosis? In: Twenty-ninth Interscience Conference on Antimicrobial Agents and Chemotherapy, 1989; 307.Google Scholar
  72. 72.
    Djeu JY, Blanchard DK, Richards AL, Friedman H. Tumor necrosis factor induction by Candida albicans from human natural killer cells and monocytes. J Immunol. 1988; 141: 4047–4052.PubMedGoogle Scholar
  73. 73.
    Morrison CJ, Brummer E, Stevens DA. In vivo activation of peripheral blood polymorphonuclear neutrophils by gamma interferon results in enhanced fungal killing. Infect Immun. 1989; 57: 2953–2958.PubMedGoogle Scholar
  74. 74.
    Beaman L. Fungicidal activation of murine macrophages by recombinant gamma interferon. Infect Immun 1987; 55: 2951–2955.PubMedGoogle Scholar
  75. 75.
    Ferrante A. Tumor necrosis factor alpha potentiates neutrophil antimicrobial activity: increased fungicidal activity against Torulopsis glabrata and Candida albicans and associated increases in oxygen radical production and lysosomal enzyme release. Infect Immun. 1989; 57: 2115–2122.PubMedGoogle Scholar
  76. 76.
    Vecchiarelli A, Todisco T, Puliti M, Dottorini M, Bistoni F. Modulation of anti-Candida activity of human alveolar macrophages by interferon-gamma or interleukin-l-alpha. Am J Resp Cell Mol Biol. 1989; 1; 49–55.Google Scholar
  77. 77.
    Djeu JY, Blanchard DK, Halkias D, Friedman H. Growth inhibition of Candida albicans by human polymorphonuclear neutrophils: activation by interferon-gamma and tumor necrosis factor. J Immunol. 1986; 137: 2980–2984.PubMedGoogle Scholar
  78. 78.
    Sugar AM, Field KG. Cytotoxic and cytostatic effects of recombinant tumor necrosis factor (rTNF) and Blastomyces dermatididis. Clin Res. 1986; 34: 534A.Google Scholar
  79. 79.
    Flesch IEA, Schwamberger G, Kaufmann SHE. Fungicidal activity of IFN-gamma-activated macrophages. Extracellular killing of Cryptococcus neoformans. J Immunol. 1989; 142: 3219–3224.PubMedGoogle Scholar
  80. 80.
    Parant M, Parant F, Vinit M-A, Chedid L. Action protectrice du ‘tumor necrosis factor’ (TNF) obtenu par recombinaison genetique contre l’infection experimentale bacterienne ou fongique. C R Acad Sci Paris. 1987; 304: 1–4.PubMedGoogle Scholar
  81. 81.
    Van’t Wout JW, Van der Meer JWM, Barza M, Dinarello CA. Protection of neutropenic mice from lethal Candida albicans infection by recombinant interleukin 1. Eur J Immunol. 1988; 18: 1143–1146.PubMedCrossRefGoogle Scholar
  82. 82.
    Pecyk RA, Fraser-Smith EB, Matthews TR. Efficacy of interleukin-1B against systemic Candida albicans infection in normal and immunosuppressed mice. Infect Immun 1989; 57: 3257–3258.PubMedGoogle Scholar
  83. 83.
    Roth RI Jr., Goldstein MI. Inhibition of growth of pathogenic yeasts by human serum. J Invest Dermatol. 1961; 36: 383–387.PubMedGoogle Scholar
  84. 84.
    Louria DB, Smith JK, Brayton RG, Buse M. Anti-Candida factors in serum and their inhibitors. 1. Clinical and laboratory observations. J Infect Dis. 1972; 125: 102–114.PubMedCrossRefGoogle Scholar
  85. 85.
    Baum GL, Artis D. Growth inhibition of Cryptococcus neoformans by cell free human serum. Am J Med Sci. 1961; 241: 613–616.PubMedCrossRefGoogle Scholar
  86. 86.
    Gale GR, Welch AM. Studies of opportunistic fungi. 1. Inhibition of Rhizopus oryzae by human serum. Am J Med Sci. 1961; 241: 604–612.PubMedCrossRefGoogle Scholar
  87. 87.
    Diamond RD Immunology of invasive fungal infections. In: Nahmias Ai, O’Reilly RJ, eds. Comprehensive Immunology. Immunology of Human Infection Part 1. Bacteria, Mycoplasmae, Chlamydiae and Fungi. New York: Plenum; 1981: 585–633.Google Scholar
  88. 88.
    Elfin RJ, Wolff SM. Effect of pH and iron concentration on growth of Candida albicans in human serum. J Infect Dis. 1973; 127: 705–712.CrossRefGoogle Scholar
  89. 89.
    Artis WM, Fountain JA, Delcher HK, Jones HE. A mechanism of susceptibility to mucormycosis in diabetic ketoacidosis: transferrin and iron availability. Diabetes. 1982; 31: 1109–1111.PubMedCrossRefGoogle Scholar
  90. 90.
    Caroline L, Taschdjian CL, Kozinn PJ, Schade AL. Reversal of serum fungistasis by the addition of iron. J Invest Dermatol. 1964; 42: 415–419.PubMedGoogle Scholar
  91. 91.
    Mandai B. AIDS and fungal infections. J Infect. 1989; 19: 199–205.CrossRefGoogle Scholar
  92. 92.
    Editorial. Oral candidosis in HIV infection. Lancet. 1989; II: 1491–1492.Google Scholar
  93. 93.
    Chuck SL, Sande MA. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med. 1989; 321: 794–799.PubMedCrossRefGoogle Scholar
  94. 94.
    Zuger A, Louie E, Holzman RS, Simberkoff MS, Rahal JJ. Cryptococcal disease in patients with the acquired immunodeficiency syndrome. Diagnostic features and outcome of treatment. Ann Intern Med. 1986; 104: 234–240.PubMedGoogle Scholar
  95. 95.
    Kovacs JA, Kovacs AA, Polis M, Wright WC, Gill VJ, Tuazon CU, Gelmann ER, Lane HC, Longfield R, Overturf G, Macher AM, Fauci AS, Parillo JE, Bennett JE, Masur H. Cryptococcosis in the acquired immunodeficiency syndrome. Ann Intern Med. 1985; 103: 533–538.PubMedGoogle Scholar
  96. 96.
    Eng RHK, Bishburg E, Smith SM. Cryptococcal infections in patients with the acquired immune deficiency syndrome. Am J Med. 1986; 81: 19–23.PubMedCrossRefGoogle Scholar
  97. 97.
    Wheat LJ, Connolly-Stringfield P, Kohler RB, Frame PT, Gupta MR. Histoplasma capsulatum polysaccharide antigen detection in diagnosis and management of disseminated histoplasmosis in patients with acquired immunodeficiency syndrome. Am J Med. 1989; 87: 396–145.PubMedCrossRefGoogle Scholar
  98. 98.
    Johnson PC, Khardori N, Najjar AF, Butt F, Mansell PWA, Sarosi GA. Progressive disseminated histoplasmosis in patients with acquired immunodeficiency syndrome. Am J Med. 1988; 85: 152–158.PubMedCrossRefGoogle Scholar
  99. 99.
    Huang CT, McGarry T, Cooper S, Saunders R, Andavolu R. Disseminated histoplasmosis in the acquired immunodeficiency syndrome. Report of five cases from a nonendemic area. Arch Intern Med. 1987; 147: 1181–1184.PubMedCrossRefGoogle Scholar
  100. 100.
    Bronnimann DA, Adam RD, Galgiani JN, Habib MP, Petersen EA, Porter B, Bloom JW. Cociccidoidomycosis in the acquired immunodeficiency syndrome. Ann Intern Med. 1987; 106: 372–379.PubMedGoogle Scholar
  101. 101.
    Chiu J, Berman S, Tan G, Tilles J. Disseminated blastomycosis in HIV infected patients. Fourth International Conference on AIDS, 430.Google Scholar
  102. 102.
    Stobo JD, Paul S, Van Scoy RE, Hermans PE. Suppressor thymus-derived lymphocytes in fungal infection. J Clin Invest. 1976; 57: 319–328.PubMedCrossRefGoogle Scholar
  103. 103.
    Breen JF, Lee IC, Vogel FR, Friedman H. Cryptococcal capsular polysaccharide-induced modulation of murine immune responses. Infect Immun 1982; 36: 47–51.PubMedGoogle Scholar
  104. 104.
    Blackstock R, Hall NK. Non-specific immunosuppression by Cryptococcus neoformans infection. Mycopathologia. 1984; 86: 35–43.PubMedCrossRefGoogle Scholar
  105. 105.
    Murphy JW. Effects of first-order Cryptococcus-specific T-suppressor cells on induction of cells responsible for delayed-type hypersensitivity. Infect Immun. 1985; 48: 439–445.PubMedGoogle Scholar
  106. 106.
    Khakpour FR, Murphy JW. Characterization of a third-order suppressor T cell (Ts3) induced by cryptococcal antigen(s). Infect Immun 1987; 55: 1657–1662.PubMedGoogle Scholar
  107. 107.
    Mok PWY, Greer DL. Cell-mediated immune responses in patients with paracoccidioidomycosis. Clin Exp Immunol. 1977; 28: 89–98.PubMedGoogle Scholar
  108. 108.
    Gordon IJ, Evans CC. Aspergillus lung disease. J R Coll Physicians Lond. 1986; 20: 206–211.PubMedGoogle Scholar
  109. 109.
    Opal SM, Asp AA, Cannady PB Jr, Morse PL, Burton LJ, Hammer PG II. Efficacy of infection control measures during a nosocomial outbreak of disseminated aspergillosis associated with hospital construction. J Infect Dis. 1986; 153: 634–637.PubMedCrossRefGoogle Scholar
  110. 110.
    Rippon JW. Medical Mycology. The Pathogenic Fungi and the Pathogenic Actinomycetes. 3rd Edn. Philadelphia: W.B. SAunders Co.Google Scholar
  111. 111.
    Warren RE, Warnock DW. Clinical manifestations and management of aspergillosis in the compromised patient. In: Warnock DW, Richardson MD, eds. Fungal Infection in the Compromised Patient. Chichester: John Wiley and Sons, 1982: 119–153.Google Scholar
  112. 112.
    Pepys J, Riddell RW, Citron KM, Clayton YM, Short EI. Clinical and immunological significance of Aspergillus fumigatus in the sputum. Am Rev Resp Dis. 1959; 80: 167–180.PubMedGoogle Scholar
  113. 113.
    Longbottom JL, Pepys J. Pulmonary aspergillosis: Diagnostic and immunological significance of antigens and C-substance in Aspergillus fumigatus. J Pathol Bacteriol. 1964; 88: 141–151.PubMedCrossRefGoogle Scholar
  114. 114.
    Malo JL, Paquin R. Incidence of immediate sensitivity to Aspergillus fumigatus in a North American asthmatic population. Clin Allergy. 1979; 9: 377–384.PubMedCrossRefGoogle Scholar
  115. 115.
    Mearns M, Longbottom J, Batten J. Precipitating antibodies to Aspergillus fumigatus in cystic fibrosis. Lancet. 1967; 1: 538–539.PubMedCrossRefGoogle Scholar
  116. 116.
    Zeaske R, Bruns WT, Fink JN, Greenberger PA, Colby H, Liotta JL, Roberts M Immune responses to Aspergillus in cystic fibrosis. J Allergy Clin Immunol. 1988; 82: 73–77.PubMedCrossRefGoogle Scholar
  117. 117.
    Pepys J. Fungi in pulmonary allergic diseases. In: Nahmias AJ, O’Reilly RJ, eds. Comprehensive Immunology. Immunology of Human Infection Part 1. Bacteria, Mycoplasmae, Chlamydiae and Fungi. New York: Plenum. 1981: 561–584.Google Scholar
  118. 118.
    McCarthy DS, Pepys J. Allergic broncho-pulmonary aspergillosis. Clinical immunology: (1) Clinical features. Clin Allergy. 1971; 1: 261–286.CrossRefGoogle Scholar
  119. 119.
    Henderson AH. Allergic aspergillosis: review of 32 cases. Thorax. 1968; 23: 501–512.PubMedCrossRefGoogle Scholar
  120. 120.
    Vernon DRH, Allan F. Environmental factors in allergic bronchopulmonary aspergillosis. Clin Allergy. 1980; 10: 217–227.PubMedCrossRefGoogle Scholar
  121. 121.
    Arruda LK, Platts-Mills TA, Longbottom JL, el-Dahr JM, Chapman MD. Aspergillus fumigatus: identification of 16, 18 and 45 kD antigens recognized by human IgG and IgE antibodies and murine monoclonal antibodies. J Allergy Clin Immunol. 1992; 89: 1166–76.PubMedCrossRefGoogle Scholar
  122. 122.
    Latgé JP, Moutaouakil M, Debeaupuis JP, Bouchara JP, Haynes K, Prevost MC. The 18-kilodalton antigen secreted by Aspergillus fumigatus. Infect Immun 1991; 59: 2586–2594.PubMedGoogle Scholar
  123. 123.
    Arruda LK, Platts-Mills TA, Fox JW, Chapman MD. Aspergillus fumigatus allergen I, a major IgE-binding protein, is a member of the mitogillin family of cytotoxins. J Exp Med. 1990; 172: 1529–1532.PubMedCrossRefGoogle Scholar
  124. 124.
    Lamy B, Moutaouakil M, Latgé J-P, Davies J. Secretion of a potential virulence factor, a fungal ribonucleotoxin, during human aspergillosis infections. Mol Microbiol. 1991; 5: 1811–1815.PubMedCrossRefGoogle Scholar
  125. 125.
    Wang JL, Patterson R, Rosenberg M, Roberts M, Cooper BJ. Serum IgE and IgG antibody activity against Aspergillus fumigatus as a diagnostic aid in allergic bronchopulmonary aspergillosis. Am Rev Resp Dis. 1978; 117: 917–927.PubMedGoogle Scholar
  126. 126.
    Malo JL, Longbottom J, Mitchell J, Hawkins R, Pepys J. Studies in chronic allergic bronchopulmonary aspergillosis: 3 Immunological findings. Thorax. 1977; 32: 269–274.PubMedCrossRefGoogle Scholar
  127. 127.
    Schwartz HJ, Citron KM, Chester EH, Kaimal J, Barlow PB, Baum GL, Schuyler MR. A comparison of the prevalence of sensitization to Aspergillus antigens among asthmatics in Cleveland and London. J Allergy Clin Immunol. 1978; 62: 9–14.PubMedCrossRefGoogle Scholar
  128. 128.
    Riddle HFV, Channell S, Blyth W, Weir DM, Lloyd M, Amos WMG, Grant IWB. Allergic alveolitis in a maltworker. Thorax. 1968; 23: 271–280.PubMedCrossRefGoogle Scholar
  129. 129.
    British Tuberculosis Association. Aspergillus in persistent lung cavities after tuberculosis. Tubercle. 1968; 49: 1–11.CrossRefGoogle Scholar
  130. 130.
    Karas A, Hankins JR, Attar S, Miller JE, McLaughlin JS. Pulmonary aspergillosis: an analysis of 41 patients. Ann Thorac Surg. 1976; 22: 1–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Eastridge CE, Young JM, Cole F, Gourley R, Pate JW. Pulmonary aspergillosis. Ann Thorac Surg. 1972; 13: 397–403.PubMedCrossRefGoogle Scholar
  132. 132.
    Battaglini JW, Murray GF, Keagy BA, Starek PJK, Wilcox BR. Surgical management of pulmonary aspergilloma. Ann Thorac Surg. 1985; 39: 512–516.PubMedCrossRefGoogle Scholar
  133. 133.
    Longbottom JL, Clive FT. Diagnostic precipitin test in aspergillus pulmonary mycetoma. Lancet. 1964; I: 588–589.CrossRefGoogle Scholar
  134. 134.
    Binder RE, Faling J, Pugatch RD, Mahasaen C, Snider GL. Chronic necrotizing pulmonary aspergillosis: a discrete clinical entity. Medicine. 1982; 61: 109–124.PubMedCrossRefGoogle Scholar
  135. 135.
    Diamond RD, Huber E, Haudenschild CC. Mechanisms of destruction of Aspergillus fumigatus hyphae mediated by human monocytes. J Infect Dis. 1983; 147: 474–483.PubMedCrossRefGoogle Scholar
  136. 136.
    Denning DW, Follansbee SE, Scolaro M, Norris S, Edelstein H, Stevens DA. Pulmonary aspergillosis in the acquired immunodeficiency syndrome. New Engl J Med. 1991; 324: 654–662.PubMedCrossRefGoogle Scholar
  137. 137.
    Minamoto GY, Barlam TF, Van der Els NJ. Invasive aspergillosis in patients with AIDS. Clin Infect Dis. 1992; 14: 66–74.PubMedCrossRefGoogle Scholar
  138. 138.
    Karam GH, Griffin FM Jr. Invasive pulmonary aspergillosis in nonimmunocompromised, nonneutropenic hosts. Rev Infect Dis. 1986; 8: 357–363.PubMedCrossRefGoogle Scholar
  139. 139.
    Fisher BD, Armstrong D, Yu B, Gold JWM. Invasive aspergillosis. Progress in early diagnosis and treatment. Am J Med. 1981; 71: 571–577.PubMedCrossRefGoogle Scholar
  140. 140.
    Meyer RD, Young LS, Armstrong D, Yu B. Aspergillosis complicating neoplastic disease. Am J Med. 1973; 54: 6–15.PubMedCrossRefGoogle Scholar
  141. 141.
    Young RC, Bennett JE, Vogel CL, Carbone PP, DeVita VT. Aspergillosis: the spectrum of the disease in 98 patients. Medicine. 1970; 49: 147–173.PubMedCrossRefGoogle Scholar
  142. 142.
    Aisner J, Schimpff SC, Wiernik PH. Treatment of invasive aspergillosis: relation of early diagnosis and treatment to response. Ann Intern Med. 977; 86: 539–543.Google Scholar
  143. 143.
    Kan VL, Bennett JE. Lectin-like attachment sites on murine pulmonary alveolar macrophages bind Aspergillus fumigatus conidia. J Infect Dis. 1988; 158: 407–414.PubMedCrossRefGoogle Scholar
  144. 144.
    Schaffner A, Douglas H, Braude AI, Davis CE. Killing of Aspergillus spores depends on the anatomical source of the macrophage. Infect Immun 1983; 42: 1109–1115.PubMedGoogle Scholar
  145. 145.
    Waldorf AR, Levitz SM, Diamond RD. In vivo bronchoalveolar macrophage defense against Rhizopus oryzae and Aspergillus fumigatus. J Infect Dis. 1984; 150: 752–760.PubMedCrossRefGoogle Scholar
  146. 146.
    Levitz SM, Diamond RD. Mechanisms of resistance of Aspergillus fumigatus conidia to killing by neutrophils in vitro. J Infect Dis. 1985; 152: 33–42.PubMedCrossRefGoogle Scholar
  147. 147.
    Robertson MD, Raeburn JA, Gormley IP, Seaton A. Do phagocytic cells ingest spores of Aspergillus fumigatus? Thorax. 1985; 40: 237.Google Scholar
  148. 148.
    Stringer ML, Dean RA, Sewall TC, Timberlake WE. Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev. 1991; 5: 1161–1171.PubMedCrossRefGoogle Scholar
  149. 149.
    Cole GT, Sekiya T, Kasai R, Yokoyama T, Nozawa Y. Surface ultrastructure and chemical composition of the cell walls of conidial fungi. Exp Mycol. 1979; 3: 132–156.CrossRefGoogle Scholar
  150. 150.
    Diamond RD. Fungal surfaces: effects of interactions with phagocytic cells. Rev Infect Dis. 1989; 10: S428–431.Google Scholar
  151. 151.
    Corbel MJ, Eades SM. Examination of the effect of age and acquired immunity on the susceptibility of mice to infection with Aspergillus fumigatus. Mycopathologia. 1977; 60: 79–85.PubMedCrossRefGoogle Scholar
  152. 152.
    Corbel MJ, Eades SM. The relative susceptibility of New Zealand Black and CBA mice to infection with opportunistic fungal pathogens. Sabouraudia. 1976; 14: 17–32.PubMedCrossRefGoogle Scholar
  153. 153.
    Williams DM, Weiner MH, Drutz DJ. Immunologic studies of disseminated infection with A. fumigatus in the nude mouse. J Infect Dis. 1981; 143: 726–733.PubMedCrossRefGoogle Scholar
  154. 154.
    Monga DP. Studies on experimental aspergillosis in immunodeficient mice. Zentralbi Bakteriol Mikrobiol Hyg (A). 1983; 254: 552–560.Google Scholar
  155. 155.
    Matthews R, Burnie JP, Fox A, Tabaqchali S Immunoblot analysis of serological responses in invasive aspergillosis. J Clin Pathol. 1985; 38: 1300–1303.PubMedCrossRefGoogle Scholar
  156. 156.
    Burnie JP, Matthews RC. Recent laboratory observations in the diagnosis of systemic fungal infection: Candida and Aspergillus. In: Holmberg K, Meyer RD, eds. Diagnosis and Therapy of Systemic Fungal Infections. New York: Raven Press, 1989: 101–113.Google Scholar
  157. 157.
    Talbot GH, Weiner MH, Gerson SL, Provencher M, Hurwitz S. Serodiagnosis of invasive aspergillosis: validation of the Aspergillus fumigatus antigen radioimmunoassay. J Infect Dis. 1987; 155: 12–27.PubMedCrossRefGoogle Scholar
  158. 158.
    Sabetta JR, Miniter P, Andriole VT. The diagnosis of invasive aspergillosis by an enzyme-linked immunosorbent assay for circulating antigen. J Infect Dis. 1985; 152: 946–953.PubMedCrossRefGoogle Scholar
  159. 159.
    Rogers TR, Haynes KA, Barnes RA. Value of antigen detection in predicting invasive pulmonary aspergillosis. Lancet. 1990; 336: 1210–1213.PubMedCrossRefGoogle Scholar
  160. 160.
    Benbow EW, Stoddart RW. Systemic zygomycosis. Postgrad Med J. 1986; 62: 985–996.PubMedCrossRefGoogle Scholar
  161. 161.
    Lehrer RI, Howard DH, Sypherd PS, Edwards JE, Segal GP, Winston DJ. Mucormycosis. Ann Intern Med. 93: 93–108.Google Scholar
  162. 162.
    Gale GR, Welch AM. Studies of opportunistic fungi. I. Inhibition of Rhizopus oryzae by human serum. Am J Med Sci. 1961; 45: 604–612.CrossRefGoogle Scholar
  163. 163.
    Eng RHK, Corrado M, Chin E. Susceptibility of zygomycetes to human serum. Sabouraudia. 1981; 19: 111–115.PubMedCrossRefGoogle Scholar
  164. 164.
    Waldorf AR, Ruderman N, Diamond RD. Specific susceptibility to mucormycosis in murine diabetes and bronchoalveolar macrophage defense against Rhizopus. J Clin Invest. 1984; 74: 150–160.PubMedCrossRefGoogle Scholar
  165. 165.
    Merkow L, Pardo M, Epstein SM, Verney E, Sidransky H. Lysosomal stability during phagocytosis of Aspergillus fíavus spores by alveolar macrophages of cortisone-treated mice. Science. 1968; 160: 79–81.PubMedCrossRefGoogle Scholar
  166. 166.
    Merkow LP, Epstein SM, Sidransky H, Verney E, Pardo M. The pathogenesis of experimental pulmonary aspergillosis. Am J Pathol. 1971; 62: 57–74.PubMedGoogle Scholar
  167. 167.
    Polli VC, Diekmann H, Kis Z, Ettlinger L. Uber das vorkommen ketonreduktasen bei mikroorganismen. Pathol Microbiol. 1965; 28: 93–98.Google Scholar
  168. 168.
    Goodill JJ, Abuelo JG. Mucormycosis - a new risk of deferoxamine therapy in dialysis patients with aluminium or iron overload. N Engl J Med. 1988; 317: 54.Google Scholar
  169. 169.
    Chinn RYW, Diamond RD. Generation of chemotactic factors by Rhizopus oryzae in the presence and absence of serum: relationship to hyphal damage mediated by human neutrophils and effects of hyperglycaemia and ketoacidosis. Infect Immun. 1982; 38: 1123–1129.PubMedGoogle Scholar
  170. 170.
    Corbel MJ, Eades SM. Experimental mucormycosis in congenitally athymic (nude) mice. Mycopathologia. 1977; 62: 117–120.PubMedCrossRefGoogle Scholar
  171. 171.
    Corbel MJ, Eades SM. Factors determining the susceptibility of mice to experimental phycomycosis. J Med Microbiol. 1975; 8: 551–564.PubMedCrossRefGoogle Scholar
  172. 172.
    Wysong DR, Waldorf AR. Electrophoretic and immunoblot analysis of Rhizopus arrhizus antigens. J Clin Microbiol. 1987; 25: 358–363.PubMedGoogle Scholar
  173. 173.
    Kaufman L, Turner LF, McLaughlin DW. Indirect enzyme-linked immunosorbent assay for zygomycosis. J Clin Microbiol. 1991; 27: 1979–1982.Google Scholar
  174. 174.
    Maksymiuk AW, Thongprasert S, Hopfer R, Luna M, Fainstein V, Bodey GP. Systemic candidiasis in cancer patients. Am J Med. 1984; 77: 20–27.PubMedGoogle Scholar
  175. 175.
    Wingard JR, Merz WG, Saral R. Candida tropicalis: a major pathogen in immunocompromised patients. Ann Intern Med. 1979; 91: 539–543.PubMedGoogle Scholar
  176. 176.
    Calderone RA, Scheid WM. Role of fibronectin in the pathogenesis of candidal infection. Rev Infect Dis. 1987; 9: S400 - S403.PubMedCrossRefGoogle Scholar
  177. 177.
    Sawyer RT, Horst MN, Garner RE, Hudson J, Jenkins PR, Richardson AL. Altered hepatic clearance and killing of Candida albicans in the isolated perfused mouse liver model. Infect Immun 1990; 58: 2869–2874.PubMedGoogle Scholar
  178. 178.
    Hazen KC. Participation of yeast cell surface hydrophobicity in adherence of Candida albicans to human epithelial cells. Infect Immun. 1989; 57: 1894–1900.PubMedGoogle Scholar
  179. 179.
    Rotrosen D, Calderone RA, Edwards JE Jr. Adherence of Candida species to host tissues and plastic surfaces. Rev Infect Dis. 1986; 8: 73–85.PubMedCrossRefGoogle Scholar
  180. 180.
    Magee BM, Hube B, Wright RJ, Sullivan PJ, Magee PT. The genes encoding the secreted aspartyl proteinases of Candida albicans constitute a family with at least three members. Infect Immun 1993; 61: 3240–3243.PubMedGoogle Scholar
  181. 181.
    Sobel JD, Muller G, Buckley HB. Critical role of germ tube formation in the pathogenesis of candidal vaginitis. Infect Immun 1984; 44: 576–580.PubMedGoogle Scholar
  182. 182.
    Kirkpatrick CH. Host factors in defense against fungal infections. Am J Med. 1984; 77: 1–12.PubMedGoogle Scholar
  183. 183.
    Lehner T, Wilton JMA, Ivanyi L Immunodeficiencies in chronic muco-cutaneous candidosis. Immunology. 1972; 22: 775–787.PubMedGoogle Scholar
  184. 184.
    Ahonen P, Myllarniemi S, Sipila I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med. 1990; 322: 1829–1836.PubMedCrossRefGoogle Scholar
  185. 185.
    Edwards JE Jr. Candidaemia and Candida catheter-associated sepsis. In: Holmberg K, Meyer RD, eds. Diagnosis and Therapy of Systemic Fungal Infections. New York: Raven Press, 1989: 39–46.Google Scholar
  186. 186.
    Parker JC Jr, McCloskey JJ, Knauer KA. Pathobiologic features of human candidiasis. A common deep mycosis of the brain, heart and kidney in the altered host. Am J Clin Pathol. 1976; 65: 991–1000.PubMedGoogle Scholar
  187. 187.
    Bross J, Talbot GH, Maislin G, Hurwitz S, Strom BL. Risk factors for nosocomial candidaemia: a case-control study in adults without leukaemia. Am J Med. 1989; 87: 614–620.PubMedCrossRefGoogle Scholar
  188. 188.
    Tashjian LS, Abramson JS, Peacock JE. Focal hepatic candidiasis: a distinct clinical variant of candidiasis in immunocompromised patients. Rev Infect Dis. 1984; 6: 689–703.PubMedCrossRefGoogle Scholar
  189. 189.
    Thaler M, Pastakia B, Shawker TH, O’Leary T, Pizzo PA. Hepatic candidiasis in cancer patients: the evolving picture of the syndrome. Ann Intern Med. 1988; 108: 88–100.PubMedGoogle Scholar
  190. 190.
    Bodey GP, Anaissie EJ. Chronic systemic candidiasis. Eur J Clin Microbiol Infect Dis. 1989; 8: 855–857.PubMedCrossRefGoogle Scholar
  191. 191.
    Domer JE, Carrow EW. Candidiasis. In: Cox RA, ed. Immunology of the Fungal Diseases. Boca Raton, Florida: CRC Press, 1989: 57–92.Google Scholar
  192. 192.
    Palma C, Serbousek D, Torosantucci A, Cassone A, Djeu JY. Identification of a mannoprotein fraction from Candida albicans that enhances human polymorphonuclear leukocyte (PMNL) functions and stimulates lactoferrin in PMNL inhibition of candidal growth. J Infect Dis. 1992; 166: 1103–1112.PubMedCrossRefGoogle Scholar
  193. 193.
    Diamond G, Zasloff M, Eck H, Brasseur M, Lee Maloy W, Bevins CL. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci USA. 1991; 88: 3952–3956.PubMedCrossRefGoogle Scholar
  194. 194.
    Diamond G, Jones DE, Bevins CL. Airway epithelial cells are the site of expression of a mammalian antimicrobial peptide gene. Proc Natl Acad Sci USA. 1993; 90: 4596–4600.PubMedCrossRefGoogle Scholar
  195. 195.
    Lehrer RI, Cline MJ. Interaction of Candida albicans with human leukocytes and serum. J Bacteriol. 1969; 98: 996–1004.PubMedGoogle Scholar
  196. 196.
    Lehrer RI. Measurement of candidacidal activity of specific leukocyte types in mixed cell populations. I. Normal, myeloperoxidase-deficient, and chronic granulomatous disease neutrophils. Infect Immun 1970; 2: 42–47.PubMedGoogle Scholar
  197. 197.
    Lehrer RI. Measurement of candidacidal activity of specific leukocyte types in mixed cell populations. II. Normal and chronic granulomatous disease eosinophils. Infect Immun 1971; 3: 800–802.PubMedGoogle Scholar
  198. 198.
    Wagner DK, Collins-Lech C, Sohnle PG. Inhibition of neutrophil killing of Candida albicans pseudohyphae by substances which quench hypochlorous acid and chloramines. Infect Immun 1986; 51: 731–735.PubMedGoogle Scholar
  199. 199.
    Lehrer RI. The fungicidal activity of human monocytes: a myeloperoxidase-linked mechanism. Clin Res. 1971; 18: 408.Google Scholar
  200. 200.
    Marodi L, Korchak HM, Johnston RB Jr. Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J Immunol. 1991; 146: 2783–2789.PubMedGoogle Scholar
  201. 201.
    Jupin C, Parant M, Chedid L. Involvement of reactive oxygen intermediates in the candidacidal activity of human neutrophils stimulated by muramyl dipeptide or tumor necrosis factor. Immunobiology. 1989; 180: 68–79.PubMedCrossRefGoogle Scholar
  202. 202.
    Kullberg BJ, van’t Wout HWM, van Furth R. Role of granulocytes in increased host resistance to Candida albicans induced by recombinant interleukin-1. Infect Immun 1990; 58: 3319–3324.PubMedGoogle Scholar
  203. 203.
    Stevenhagen A, van Furth R. Interferon-gamma activates the oxidative killing of Candida albicans by human granulocytes. Clin Exp Immunol. 1993; 91: 170–175.PubMedCrossRefGoogle Scholar
  204. 204.
    Riipi L, Carlson E. Tumor necrosis factor (TNF) is induced in mice by Candida albicans: role of TNF in fibrinogen increase. Infect Immun 1990; 58: 2750–2754.PubMedGoogle Scholar
  205. 205.
    Garner RE, Kuruganti U, Czarniecki CW, Chiu HH, Domer JE. In vivo immune responses to Candida albicans modified by treatment with recombinant murine gamma interferon. Infect Immun. 1989; 57: 1800–1808.PubMedGoogle Scholar
  206. 206.
    Diamond RD, Haudenschild CC. Monocyte-mediated serum-independent damage to hyphal and pseudohyphal forms of Candida albicans in vitro. J Clin Invest. 1981; 67: 173–182.PubMedCrossRefGoogle Scholar
  207. 207.
    Denning TJV, Davies RR. Candida albicans and the chemotaxis of polymorphonuclear neutrophils. Sabouraudia. 1973; 11: 210–221.PubMedCrossRefGoogle Scholar
  208. 208.
    Ferrante A, Thong YH. Requirement of heat-labile opsonins for maximal phagocytosis of Candida albicans. Sabouraudia. 1979; 17: 293–297.PubMedCrossRefGoogle Scholar
  209. 209.
    Wilton JMA. The role of Fc and C3b receptors in phagocytosis by inflammatory polymorphonuclear leukocytes in man. Immunology. 1977; 32: 955–961.PubMedGoogle Scholar
  210. 210.
    Djeu JY, Liu JH, Wei S, Rui H, Pearson CA, Leonard WJ, Blanchard DK. Function associated with IL-2 receptor-beta on human neutrophils. Mechanism of activation of antifungal activity against Candida albicans by IL-2. J Immunol. 1993; 150: 960–970.PubMedGoogle Scholar
  211. 211.
    Moors MA, Stull TL, Blank KJ, Buckley HR, Mosser DM. A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med. 1992; 175: 1643–1651.PubMedCrossRefGoogle Scholar
  212. 212.
    Macdougall LG, Anderson R, McNab GM, Katz J. The immune response in iron-deficient children: impaired cellular defense mechanisms with altered humoral components. J Pediatr. 1975; 86: 833–843.PubMedCrossRefGoogle Scholar
  213. 213.
    Enelow RI, Sullivan GW, Carper HT, Mandell GL. Cytokine-induced human multinucleated giant cells have enhanced candidacidal activity and oxidative capacity compared with macrophages. J Infect Dis. 1992; 166: 664–668.PubMedCrossRefGoogle Scholar
  214. 214.
    Domer J, Elkins K, Ennist D, Baker P. Modulation of immune responses by surface polysaccharides of Candida albicans. Rev Infect Dis. 1988; 10: S419 - S422.PubMedGoogle Scholar
  215. 215.
    Smail EH, Cronstein BN, Meshulam T, Esposito AL, Diamond RD. In vitro, Candida albicans releases the immune modulator adenosine and a second, high molecular weight agent that blocks neutrophil killing. J Immunol. 1992; 148: 3588–3595.PubMedGoogle Scholar
  216. 216.
    Vuddhakul K, Seow WK, McCormack JG, Thong YH. Direct modulation of human neutrophil behaviour by Candida albicans. Int Arch Allergy Appl Immunol. 1989; 90: 291–296.PubMedCrossRefGoogle Scholar
  217. 217.
    Saxena A, Calderone R. Purification and characterization of the extracellular C3d-binding protein of Candida albicans. Infect Immun. 1990; 58: 309–314.PubMedGoogle Scholar
  218. 218.
    Eigentler A, Schulz TF, Larcher C, Breitwieser E-M, Myones BL, Petzer AL, Dierich MP. C3bi-binding protein on Candida albicans: temperature-dependent expression and relationship to human complement receptor type 3. Infect Immun. 1989; 57: 616–622.PubMedGoogle Scholar
  219. 219.
    Gilmore BJ, Retsinas EM, Lorenz JS, Hostetter MK. An iC3b receptor on Candida albicans: structure, function and correlates for pathogenicity. J Infect Dis. 1988; 157: 38–46.PubMedCrossRefGoogle Scholar
  220. 220.
    Diamond RD, Oppenheim F, Nakagawa Y, Krzesicki R, Haudenschild CC. Properties of a product of Candida albicans hyphae and pseudohyphae that inhibits contact between the fungi and human neutrophils in vitro. J Immunol. 1980; 125: 2797–2804.PubMedGoogle Scholar
  221. 221.
    Rogers TJ, Balish E. Effect of systemic candidiasis on blastogenesis of lymphocytes from germfree and conventional rats. Infect Immun 1978; 20: 142–150.PubMedGoogle Scholar
  222. 222.
    Wilson DE, Bennett JE, Bailey JW. Serologic grouping of Cryptococcus neoformans. Proc Soc Exp Biol Med. 1968; 127: 820–823.PubMedGoogle Scholar
  223. 223.
    Ikeda R, Shinoda T, Fukazawa Y, Kaufman L. Antigenic characterization of Cryptococcus neoformans serotypes and its application to serotyping of clinical isolates. J Clin Microbiol. 1982; 16: 22–29.PubMedGoogle Scholar
  224. 224.
    Kwon-Chung KJ, Bennett JE, Rhodes JC. Taxonomic studies on Filobasidiella species and their anamorphs. Antonie van Leeuwenhoek. 1982; 48: 25–38.PubMedCrossRefGoogle Scholar
  225. 225.
    Ellis DH, Pfeiffer TJ. Natural habitat of Cryptococcus neoformans var gatti. J Clin Microbiol. 1990; 28: 1642–1644.PubMedGoogle Scholar
  226. 226.
    Kwon-Chung KJ, Bennett JE. Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am J Epidemiol. 1984; 120: 123–130.PubMedGoogle Scholar
  227. 227.
    Atkinson AJ Jr, Bennett JE. Experience with a new skin test antigen prepared from Cryptococcus neoformans. Am Rev Resp Dis. 1968; 97: 637–643.PubMedGoogle Scholar
  228. 228.
    Kerkering TM, Duma RJ, Shadomy S. The evolution of pulmonary cryptococcosis. Clinical implications from a study of 41 patients with and without compromising host factors. Ann Intern Med. 1981; 94: 611–616.PubMedGoogle Scholar
  229. 229.
    Igel HJ, Bolande RP. Humoral defense mechanisms in cryptococcosis: substances in normal human serum, saliva, and cerebrospinal fluid affecting the growth of Cryptococcus neoformans. J Infect Dis. 1966; 116: 75–83.PubMedCrossRefGoogle Scholar
  230. 230.
    Kwon-Chung KJ, Rhodes JC. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun. 1986; 51: 218–223.PubMedGoogle Scholar
  231. 231.
    Polacheck I, Platt Y, Aronovitch J. Catecholamines and virulence of Cryptococcus neoformans. Infect Immun. 1990; 58: 2919–2922.PubMedGoogle Scholar
  232. 232.
    Granger DL, Perfect JR, Durack DT. Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J Clin Invest. 1985; 76: 508–516.PubMedCrossRefGoogle Scholar
  233. 233.
    Diamond RD, Root RK, Bennett JE. Factors influencing killing of Cryptococcus neoformans by human leukocytes in vitro. J Infect Dis. 1972; 125: 367–376.PubMedCrossRefGoogle Scholar
  234. 234.
    Kozel TR, Gotschlich EC. The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol. 1982; 129: 1675–1680.PubMedGoogle Scholar
  235. 235.
    Kozel TR, Hermerath CA. Binding of cryptococcal polysaccharide to Cryptococcus neoformans. Infect Immun 1984; 43: 879–886.PubMedGoogle Scholar
  236. 236.
    Gadebusch HH. Mechanisms of native and acquired resistance to infection with Cryptococcus neoformans. CRC Crit Rev Microbiol. 1972; 1: 311–320.CrossRefGoogle Scholar
  237. 237.
    Lehrer RI, Ladra KM. Fungicidal components of mammalian granulocytes active against Cryptococcus neoformans. J Infect Dis. 1977; 136: 96–99.PubMedCrossRefGoogle Scholar
  238. 238.
    Kozel TR, Pfrommer GST, Redelman D. Activated neutrophils exhibit enhanced phagocytosis of Cryptococcus neoformans opsonized with normal human serum. Clin Exp Immunol. 1987; 70: 238–246.PubMedGoogle Scholar
  239. 239.
    Mitchell TG, Friedman L. In vitro phagocytosis and intracellular fate of variously encapsulated strains of Cryptococcus neoformans. Infect Immun 1972; 5: 491–498.PubMedGoogle Scholar
  240. 240.
    Levitz SM, Farrell TP. Growth inhibition of Cryptococcus neoformans by cultured human monocytes: role of the capsule, opsonins, the culture surface and cytokines. Infect Immun 1990; 58: 1201–1209.PubMedGoogle Scholar
  241. 241.
    Cameron ML, Granger DL, Weinnberg JB, Kozumbo WJ, Koren HS Human alveolar and peritoneal macrophages mediate fungistasis independently of L-arginine oxidation to nitrite or nitrate. Am Rev Resp Dis. 1990; 142: 1313–1319.PubMedGoogle Scholar
  242. 242.
    Davies SF, Clifford DP, Hoidal JR, Repine JE. Opsonic requirements for the uptake of Cryptococcus neoformans by human polymorphonuclear leukocytes and monocytes. J Infect Dis. 1982; 145: 870–874.PubMedCrossRefGoogle Scholar
  243. 243.
    Diamond RD, Erickson NF III. Chemotaxis of human neutrophils and monocytes induced by Cryptococcus neoformans. Infect Immun 1982; 38: 380–382.PubMedGoogle Scholar
  244. 244.
    Mukherjee J, Pirofski LA, Scharff MD, Casadevall A. Antibody-mediated protection in mice with lethal intracerebral Cryptococcus neoformans infection. Proc Natl Acad Sci USA. 1993; 90: 3636–3640.PubMedCrossRefGoogle Scholar
  245. 245.
    Cauley LK, Murphy JW. Response of congenitally athymic (nude) and phenotypically normal mice to Cryptococcus neoformans infection. Infect Immun 1979; 23: 644–651.PubMedGoogle Scholar
  246. 246.
    Lim TS, Murphy JW. Transfer of immunity to cryptococcosis by T-enriched splenic lymphocytes from Cryptococcus neoformans sensitized mice. Infect Immun. 1980; 30: 5–11.PubMedGoogle Scholar
  247. 247.
    Fung PYS, Murphy JW. In vitro interactions of immune lymphocytes and Cryptococcus neoformans. Infect Immun 1982; 36: 1128–1138.PubMedGoogle Scholar
  248. 248.
    Karaoui RM, Hall NK, Larsh HW. Role of macrophages in immunity and pathogenesis of experimental cryptococcosis induced by the airborne route–Part II: Phagocytosis and intracellular fate of Cryptococcus neoformans. Mycosen. 1977; 20: 409–422.CrossRefGoogle Scholar
  249. 249.
    Diamond RD, Bennett JE. Disseminated cryptococcosis in man: decreased lymphocyte transformation in response to Cryptococcus neoformans. J Infect Dis. 1973; 127: 694–697.PubMedCrossRefGoogle Scholar
  250. 250.
    Murphy JW. Influence of cryptococcal antigens on cell-mediated immunity. Rev Infect Dis. 1988; 10: S432 - S435.PubMedCrossRefGoogle Scholar
  251. 251.
    Medoff G, Kobayashi GS, Painter A, Travis S. Morphogenesis and pathogenicity of Histoplasma capsulatum. Infect Immun. 1987; 55: 1355–1358.PubMedGoogle Scholar
  252. 252.
    Keath EJ, Painter AA, Kobayashi GS, Medoff G. Variable expression of a yeast-phasespecific gene in Histoplasma capsulatum strains differing in thermotolerance and virulence. Infect Immun 1989; 57: 1384–1390.PubMedGoogle Scholar
  253. 253.
    Goodwin RA Jr, Des Prez RM. Histoplasmosis. Am Rev Resp Dis. 1978; 117: 929–956.PubMedGoogle Scholar
  254. 254.
    Sathapatayavongs B, Batteiger BE, Wheat J, Slama TG, Wass JL. Clinical and laboratory features of disseminated histoplasmosis during two large urban outbreaks. Medicine. 1983; 62: 263–270.PubMedCrossRefGoogle Scholar
  255. 255.
    Baughman RP, Kim CK, Vinegar A, Hendricks DE, Schmidt DJ, Bullock WE. The pathogenesis of experimental pulmonary histoplasmosis. Correlative studies of histopathology, bronchoalveolar lavage, and respiratory function. Am Rev Resp Dis. 1986; 134: 771–776.PubMedGoogle Scholar
  256. 256.
    Howard DH. Fate of Histoplasma capsulatum in guinea pig polymorphonuclear leukocytes. Infect Immun. 1973; 8: 412–419.PubMedGoogle Scholar
  257. 257.
    Schnur RA, Newman SL. The respiratory burst response to Histoplasma capsulatum by human neutrophils. Evidence for intracellular trapping of superoxide anion. J Immunol. 1990; 144: 4765–4772.PubMedGoogle Scholar
  258. 258.
    Cox RA. Immunologic studies of patients with histoplasmosis. Am Rev Resp Dis. 1979; 120: 143–149.PubMedGoogle Scholar
  259. 259.
    Tewari RP, Sharma D, Solotorovsky M, Lafemina R, Balint J. Adoptive transfer of immunity from mice immunized with ribosomes or live yeast cells of Histoplasma capsulatum. Infect Immun. 1977; 15: 789–795.PubMedGoogle Scholar
  260. 260.
    Tewari RP, Sharma DK, Mathur A. Significance of thymus-derived lymphocytes in immunity elicited by immunization with ribosomes or live yeast cells of Histoplasma capsulatum. J Infect Dis. 1978; 138: 605–613.PubMedCrossRefGoogle Scholar
  261. 261.
    Allendoerfer R, Magee DM, Deepe GS Jr, Graybill JR. Transfer of protective immunity in murine histoplasmosis by a CD4+ T-cell clone. Infect Immun 1993; 61: 714–718.PubMedGoogle Scholar
  262. 262.
    Howard DH. Intracellular behaviour of Histoplasma capsulatum. J Bacteriol. 1964; 87: 33–38.PubMedGoogle Scholar
  263. 263.
    Newman SL, Bucher C, Rhodes J, Bullock WE. Phagocytosis of Histoplasma capsulatum yeasts and microconidia by human cultured macrophages and alveolar macrophages. J Clin Invest. 1990; 85: 223–230.PubMedCrossRefGoogle Scholar
  264. 264.
    Eissenberg LG, Goldman WE. Histoplasma capsulatum fails to trigger release of superoxide from macrophages. Infect Immun. 1987; 55: 29–34.PubMedGoogle Scholar
  265. 265.
    Kurita N, Terao K, Brummer E, Ito E, Nishimura K, Miyaji M. Resistance of Histoplasma capsulatum to killing by human neutrophils. Evasion of oxidative burst and lysosomalfusion products. Mycopathologia. 1991; 115: 207–213.PubMedCrossRefGoogle Scholar
  266. 266.
    Hill GA, Marcus S. Study of cellular mechanisms in resistance to systemic Histoplasma capsulatum infection. J Immunol. 1960; 85: 6–13.PubMedGoogle Scholar
  267. 267.
    Howard DH. Further studies on the inhibition of Histoplasma capsulatum within macrophages from immunized animals Infect Immun 1973; 8: 577–581.PubMedGoogle Scholar
  268. 268.
    Howard DH, Otto V, Gupta RK. Lymphocyte-mediated cellular immunity in histoplasmosis. Infect Immun 1971; 4: 605–610.PubMedGoogle Scholar
  269. 269.
    Wu-Hsieh B, Zlotnik A, Howard DH. T-cell hybridoma-produced lymphokine that activates macrophages to suppress intracellular growth of Histoplasma capsulatum. Infect Immun. 1984; 43: 380–385.PubMedGoogle Scholar
  270. 270.
    Wu-Hsieh B, Howard DH. Inhibition of the intracellular growth of Histoplasma capsulatum by recombinant murine gamma interferon. Infect Immun. 1987; 55: 1014–1016.PubMedGoogle Scholar
  271. 271.
    Wolf JE, Massof SE. In vivo activation of macrophage oxidative burst activity by cytokines and amphotericin B. Infect Immun 1990; 58: 1296–1300.PubMedGoogle Scholar
  272. 272.
    Wolf JE, Abegg AL, Travis SJ, Kobayashi GS, Littli JR. Effects of Histoplasma capsulatum on murine macrophage functions: inhibition of macrophage priming, oxidative burst, and antifungal activities. Infect Immun. 1989; 57: 513–519.PubMedGoogle Scholar
  273. 273.
    Fleischman J, Wu-Hsieh B, Howard DH. The intracellular fate of Histoplasma capsulatum in human macrophages is unaffected by recombinant human inteferon-gamma. J Infect Dis. 1990; 161: 143–145.CrossRefGoogle Scholar
  274. 274.
    Wu-Hsieh BA, Lee GS, Franco M, Hofman FM. Early activation of splenic macrophages by tumor necrosis factor alpha is important in determining the outcome of experimental histoplasmosis in mice. Infect Immun 1992; 60: 4230–4238.PubMedGoogle Scholar
  275. 275.
    Khardori N, Chaudhary S, McConnachie P, Tewari RP. Characterization of lymphocytes responsible for protective immunity to histoplasmosis in mice. Mycosen. 1983; 26: 523–532.CrossRefGoogle Scholar
  276. 276.
    Taylor ML, Diaz S, Gonzalez PA, Sosa AC, Toriello C. Relationship between pathogenesis and immune regulation mechanisms in histoplasmosis: a hypothetical approach. Rev Infect Dis. 1984; 6: 775–782.PubMedCrossRefGoogle Scholar
  277. 277.
    Wheat LJ, French MLV, Kohler RB, Zimmerman SE, Smith WR, Norton JA, Eitzen HE, Smith CD, Slama TG. The diagnostic laboratory tests for histoplasmosis. Analysis of experience in a large urban outbreak. Ann Intern Med. 1982; 97: 680–685.PubMedGoogle Scholar
  278. 278.
    Nickerson DA, Havens RA, Bullock WE Immunoregulation in disseminated histoplasmosis: characterization of splenic suppressor cell populations. Cell Immunol. 1981; 60: 287–297.PubMedCrossRefGoogle Scholar
  279. 279.
    Drutz DJ, Catanzaro A. Coccidioidomycosis. Part II. Am Rev Resp Dis. 1978; 117: 727–771.PubMedGoogle Scholar
  280. 280.
    Ampel NM, Wieden MA, Galgiani JN. Coccidioidomycosis: Clinical update. Rev Infect Dis. 1989; 11: 897–911.PubMedCrossRefGoogle Scholar
  281. 281.
    Drutz DJ, Huppert M. Coccidioidomycosis: factors affecting the host-parasite interaction. J Infect Dis. 1983; 147: 372–390.PubMedCrossRefGoogle Scholar
  282. 282.
    Larsen RA, Jacobson JA, Morris AH, Benowitz BA. Acute respiratory failure caused by primary pulmonary coccidioidomycosis. Two case reports and review of the literature. Am Rev Resp Dis. 1988; 131: 797–799.Google Scholar
  283. 283.
    Drutz DJ, Huppert M, Sun SH, McGuire WL. Human sex hormones stimulate the growth and maturation of Coccidioides immitis. Infect Immun. 1981; 32: 897–907.PubMedGoogle Scholar
  284. 284.
    Frey CL, Drutz DJ. Influence of fungal surface components on the interaction of Coccidioides immitis with polymorphonuclear neutrophils. J Infect Dis. 1986; 153: 933–943.PubMedCrossRefGoogle Scholar
  285. 285.
    Galgiani JN. Inhibition of different phases of Coccidioides immitis by human neutrophils or hydrogen peroxide. J Infect Dis. 1986; 153: 217–222.PubMedCrossRefGoogle Scholar
  286. 286.
    Galgiani JN, Isenberg RA, Stevens DA. Chemotaxigenic activity of extracts from the mycelia] and spherule phases of Coccidioides immitis for human polymorphonuclear leukocytes. Infect Immun. 1978; 21: 862–865.PubMedGoogle Scholar
  287. 287.
    Beaman L, Benjamini E, Pappagianis D. Activation of macrophages by lymphokines: enhancement of phagosome-lysosome fusion and killing of Coccidioides immitis. Infect Immun 1983; 39: 1201–1207.PubMedGoogle Scholar
  288. 288.
    Huppert M, Sun SH, Gleason-Jordan I, Vukovich KR. Lung weight parallels disease severity in experimental coccidioidomycosis. Infect Immun 1976; 14: 1356–1368.PubMedGoogle Scholar
  289. 289.
    Brummer E, Beaman L, Stevens DA. Killing of endospores, but not arthroconidia, of Coccidioides immitis by immunologically activated polymorphonuclear neutrophils. In: Einstein HE, Catanzaro A, eds. Coccidioidomycosis–Proceedings of the 4th International Conference. Washington DC: National Foundation for Infectious Diseases, 1985: 201–213.Google Scholar
  290. 290.
    Beaman L, Pappagianis D, Benjamini E. Mechanisms of resistance to infection with Coccidioides immitis in mice. Infect Immun. 1979; 23: 681–685.PubMedGoogle Scholar
  291. 291.
    Forbus WD, Besterbreurtje AM. Coccidioidomycosis: a study of 95 cases of the disseminated type with special reference to the pathogenesis of the disease. Mil Surg. 1946; 99: 653–719.PubMedGoogle Scholar
  292. 292.
    Drutz DJ, Catanzaro A. Coccidioidomycosis. Part I. Am Rev Resp Dis. 1978; 117: 559–585.PubMedGoogle Scholar
  293. 293.
    Beaman L, Pappagianis D, Benjamini E. Significance of T cells in resistance to experimental coccidioidomycosis. Infect Immun 1977; 17: 580–585.PubMedGoogle Scholar
  294. 294.
    Beaman L, Benjamini E, Pappagianis D. Role of lymphocytes in macrophage-induced killing of Coccidioides immitis in vitro. Infect Immun. 1981; 34: 347–353.PubMedGoogle Scholar
  295. 295.
    Beaman L. Effects of recombinant gamma-interferon and tumor necrosis factor on in vitro interactions of human mononuclear phagocytes with Coccidioides immitis. Infect Immun. 1991; 59: 4227–4229.PubMedGoogle Scholar
  296. 296.
    Cox RA Immunosuppression by cell wall antigens of Coccidioides immitis. Rev Infect Dis. 1988; 120: S415–S418.Google Scholar
  297. 297.
    Catanzaro A. Suppressor cells in coccidioidomycosis. Cell Immunol. 1981; 64: 235–245.PubMedCrossRefGoogle Scholar
  298. 298.
    Sarosi GA, Davies SF. Blastomycosis. Am Rev Resp Dis. 1979; 120: 911–938.PubMedGoogle Scholar
  299. 299.
    Deepe GS Jr, Taylor CL, Bullock WE. Evolution of inflammatory response and cellular immune responses in a murine model of disseminated blastomycosis. Infect Immun 1985; 50: 183–189.PubMedGoogle Scholar
  300. 300.
    Brummer E, Hanson LH, Stevens DA. Kinetics and requirements for activation of macrophages for fungicidal activity: effect of protein synthesis inhibitors and immunosuppressants on activation and fungicidal mechanism. Cell Immunol. 1991; 132: 236–245.PubMedCrossRefGoogle Scholar
  301. 301.
    Kanetsuna F, Carbonell LM. Cell wall composition of the yeastlike and mycelial forms of Blastomyces dermatitidis. J Bacteriol. 1971; 106: 946–948.PubMedGoogle Scholar
  302. 302.
    Thurmond LM, Mitchell TG. Blastomyces dermatididis chemotactic factor: kinetics of production and biological characterization evaluated by a modified neutrophil chemotaxis assay. Infect Immun. 1984; 46: 87–93.PubMedGoogle Scholar
  303. 303.
    Cox RA, Mills LR, Best GK, Denton JF. Histologic reactions to cell walls of an avirulent and a virulent strain of Blstomyces dermatididis. J Infect Dis. 1974; 129: 179–186.PubMedCrossRefGoogle Scholar
  304. 304.
    Sixbey JW, Fields BT, Sun CN, Clark RA, Nolan CM. Interactions between human granulocytes and Blastomyces dermatididis. Infect Immun 1979; 23: 41–44.PubMedGoogle Scholar
  305. 305.
    Frey CL, DeMarsh PL, Drutz DJ. Divergent patterns of pulmonary blastomycosis induced by conidia and yeasts in athymic and euthymic mice. Am Rev Resp Dis. 1989; 140: 118–124.PubMedCrossRefGoogle Scholar
  306. 306.
    Morozumi PA, Brummer E, Stevens DA. Protection against pulmonary blastomycosis: correlation with cellular and humoral immunity in mice after subcutaneous nonlethal infection. Infect Immun 1982; 37: 670–678.PubMedGoogle Scholar
  307. 307.
    Brummer E, Morozumi PA, Vo PT, Stevens DA. Protection against pulmonary blastomycosis: adoptive transfer with T lymphocytes, but not serum, from resistant mice. Cell Immunol. 1982; 73: 349–359.PubMedCrossRefGoogle Scholar
  308. 308.
    Bradsher RW, Ulmer WC, Marmer DJ, Townsend JM, Jacobs RF. Intracellular growth and phagocytosis of Blastomyces dermatididis by monocyte-derived macrophages from previously infected and normal subjects. J Infect Dis. 1985; 151: 57–64.PubMedCrossRefGoogle Scholar
  309. 309.
    Brummer E, Stevens DA. Fungicidal mechanisms of activated macrophages: evidence for nonoxidative mechanisms for killing of Blastomyces dermatididis. Infect Imun. 1987; 55: 3221–3224.Google Scholar
  310. 310.
    Smith DT. Immunologic types of blastomycosis: a report on 40 cases. Ann Intern Med. 1949; 31: 463–469.PubMedGoogle Scholar
  311. 311.
    Bradsher RW. Development of specific immunity in patients with pulmonary or extrapulmonary blastomycosis. Am Rev Resp Dis. 1984; 129: 430–434.PubMedGoogle Scholar
  312. 312.
    Klein BS, Bradsher RW, Vergeront JM, Davis JP. Development of long-term specific cellular immunity after acute Blastomyces dermatitidis infection: assessments following a large point-source outbreak in Wisconsin. J Infect Dis. 1990; 161: 97–101.PubMedCrossRefGoogle Scholar
  313. 313.
    Klein BS, Kuritsky JN, Chappell WA, Kaufman L, Green J, Davies SF, Williams JE, Sarosi GA. Comparison of the enzyme immunoassay, immunodiffusion and complement fixation tests in detecting antibody in human serum to the A antigen of Blastomyces dermatididis. Am Rev Resp Dis. 1986; 133: 144–148.PubMedGoogle Scholar
  314. 314.
    Klein BS, Vergeront JM, Kaufman L, Bradsher RW, Kumar UN, Mathai G, Varkey B, Davis GP. Serological tests for blastomycosis: assessment during a large point-source outbreak in Wisconsin. J Infect Dis. 1987; 155: 262–268.PubMedCrossRefGoogle Scholar
  315. 315.
    Restrepo MA. The ecology of Paracoccidioides brasiliensis: a puzzle still unsolved. Sabouraudia. 1985; 23: 323–334.PubMedCrossRefGoogle Scholar
  316. 316.
    Restrepo MA, Robledo VM, Ospina CA, Restrepo IM, Correa LA. Distribution of paracoccidioidin sensitivity in Colombia. Am J Trop Med Hyg. 1968; 17: 25–37.PubMedGoogle Scholar
  317. 317.
    Restrepo A, Salazar ME, Cano LE, Stover EP, Feldman D, Stevens DA. Estrogens inhibit mycelium-to-yeast transformation in the fungus Paracoccidioides brasiliensis: implications for resistance of females to paracoccidioidomycosis. Infect Immun 1984; 46: 346–353.PubMedGoogle Scholar
  318. 318.
    Mota NGS, Rezkallah-Iwasso MT, Peracoli MTS, Audi RC, Mendes RP, Marcondes J, Marques SA, Dillon NL, Franco MF. Correlation between cell-mediated immunity and clinical forms of paracoccidioidomycosis. Trans R Soc Trop Med Hyg. 1988; 79: 765–772.CrossRefGoogle Scholar
  319. 319.
    Sugar AM, Restrepo A, Stevens DA. Paracoccidioidomycosis in the immunosuppressed host: report of a case and review of the literature. Am Rev Resp Dis. 1984; 129: 340–342.PubMedGoogle Scholar
  320. 320.
    Ajello L, Polonelli L. Imported paracoccidioidomycosis: a public health problem in non-endemic areas. Eur J Epidemiol. 1988; 1: 160–165.Google Scholar
  321. 321.
    Mackinnon JE. Pathogenesis of South American blastomycosis. Trans R Soc Trop Med Hyg. 1959; 53: 487–494.CrossRefGoogle Scholar
  322. 322.
    Robledo MA, Graybill JR, Ahrens J, Restrepo A, Drutz DJ, Robledo M. Host defense against experimental paracoccidioidomycosis. Am Rev Resp Dis. 1982; 125: 563–567.PubMedGoogle Scholar
  323. 323.
    Calich VLG, Coppi Vaz CA, Burger E. PMN chemotactic factor produced by glass-adherent cells in the acute inflammation caused by Paracoccidioides brasiliensis. Br J Exp Pathol. 1985; 66: 57–65.PubMedGoogle Scholar
  324. 324.
    Brummer E, Hanson LH, Restrepo A, Stevens DA. In vivo and in vitro activation of pulmonary macrophages by IFN-gamma for enhanced killing of Paracoccidioides brasiliensis or Blastomyces dermatididis. J Immunol. 1988; 140: 2786–2789.PubMedGoogle Scholar
  325. 325.
    Goihman-Yahr M, Essenfeld-Yahr E, De Albornoz MC, Varzabal L, De Gomez MH, San Martin B, Ocanto A, Gil F, Convit J. Defect of in vitro digestive ability of polymorphonuclear leukocytes in paracoccidioidomycosis. Infect Immun. 1980; 28: 557–566.PubMedGoogle Scholar
  326. 326.
    San-Blas G, San-Bias F, Serrano LE. Host—parasite relationships in the yeastlike form of Paracoccidioides brasiliensis strain IVIC Pb9. Infect Immun. 1971; 15: 343–346.Google Scholar
  327. 327.
    Brummer E, Hanson LH, Restrepo A, Stevens DA. Intracellular multiplication of Paracoccidioides brasiliensis in macrophages: killing and restriction of multiplication by activated macrophages. Infect Immun. 1989; 57: 2289–2294.PubMedGoogle Scholar
  328. 328.
    Jimenez-Finkel B, Restrepo-Moreno A. Paracoccidioidomycosis. In: Cox RA, ed Immunology of the Fungal Diseases. Boca Raton, Florida: CRC Press, 1989: 227–247.Google Scholar
  329. 329.
    Arango M, Oropeza F, Anderson O, Contreras C, Bianco N, Yarzabal L. Circulating immune complexes and in vitro cell reactivity in paracoccidioidomycosis. Mycopathologia. 1982; 79: 153–158.PubMedCrossRefGoogle Scholar
  330. 330.
    Correa LA, Giraldo MR. Study of immune mechanisms in paracoccidioidomycosis I. Changes in immunoglobulins (IgG, IgM and IgA). Proc First Pan Am Symp. 1972; 254: 245–250.Google Scholar
  331. 331.
    Restrepo A, Restrepo M, de Restrepo F, Aristizabal LH, Moncada LH, Velez H. Immune responses in paracoccidioidomycosis. A controlled study of 16 patients before and after treatment. Sabouraudia. 1978; 16: 151–163.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • K. Bayston
  • C. Tang
  • J. Cohen

There are no affiliations available

Personalised recommendations