Advertisement

Immunological self-tolerance and autoimmunity

  • H. Wekerle
Part of the Immunology and Medicine Series book series (IMME, volume 24)

Abstract

The immune system has evolved to distinguish between components of its own organism and foreign molecules. This is of vital importance, since all foreign structures are potentially life-threatening, whether they have invaded the organism from outside (e.g. infectious agents), or have arisen within the tissues (e.g. tumour cells). Distinction between ‘self’ and ‘non-self’ is, however, not an easy task. A protective immune cell must be able specifically to recognize a foreign structure and to initiate its destruction and elimination; at the same time, the immune cell has to interact intimately with other cells of the organism during the development of the immune system and even in an ongoing immune response. Obviously, these self tissues must not be destroyed, but tolerated.

Keywords

Systemic Lupus Erythematosus Experimental Allergic Encephalomyelitis Bullous Pemphigoid Experimental Allergic Neuritis Ongoing Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casali P, Notkins A. Probing the human B-cell repertoire with EBV: Polyreactive antibodies and CD5+ B lymphocytes. Annu Rev Immunol. 1989;7:513–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Kipps TJ. The CD5 B cell. Adv Immunol. 1990;47:117–85.CrossRefGoogle Scholar
  3. 3.
    Rajewsky K, Förster I, Cumano A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science. 1984;238:1088–94.CrossRefGoogle Scholar
  4. 4.
    Ebeling SB, Schutte MEM, Logtenberg T. The majority of human tonsillar CD5+ B cells express somatically mutated Vk4 genes. Eur 7 Immunol. 1993;23:1405–8.CrossRefGoogle Scholar
  5. 5.
    Naparstek Y, Plotz PH. The role of autoantibodies in autoimmune disease. Annu Rev Immunol. 1993;11:79–104.PubMedCrossRefGoogle Scholar
  6. 6.
    Hohlfeld R. Disorders of neuromuscular transmission. Curr Opin Neurol Neurosurg. 1990;3:684–8.Google Scholar
  7. 7.
    Tzartos SJ, Cung MT, Derange P et al. The main immunogenic region (MIR) of the nicotinic acetylcholine receptor and the anti-MIR antibodies. Mol Neurobiol. 1992;5:1–29.CrossRefGoogle Scholar
  8. 8.
    Gharavi AE, Sammaritano LR, Wen J, Elkon KB. Induction of antiphospholipid autoantibodies by immunization with β2 glycoprotein I (apolipoprotein H). J Clin Invest. 1993;90:1105–9.CrossRefGoogle Scholar
  9. 9.
    Tan E. Autoantibodies in pathology and cell biology. Cell. 1991;67:841–2.PubMedCrossRefGoogle Scholar
  10. 10.
    Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol. 1993;11:403–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Wekerle H. Myelin specific, autoaggressive T cell clones in the normal immune repertoire: Their nature and their regulation. Int Rev Immunol. 1992;9:231–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Ben-Nun A, Wekerle H, Cohen IR. The rapid isolation of clonal a antigen-specific T lymphocytes capable of mediating autoimmune encephalomyelitis. Eur J Immunol. 1981;11:195–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Linington C, Izumo S, Suzuki M, Uyemura K, Meyermann R, Wekerle H. A permanent rat T cell line that mediates experimental allergic neuritis in the Lewis rat in vivo. J Immunol. 1984;133:1946–50.PubMedGoogle Scholar
  14. 14.
    Caspi RR, Roberge FG, McAllister CG et al. T cell lines mediating experimental autoimmune uveoretinitis (EAU) in rats. J Immunol. 1986;136:928–33.PubMedGoogle Scholar
  15. 15.
    Wekerle H, Begemann M. Experimental autoimmune orchitis: in vitro induction of an autoimmune disease. J Immunol. 1976;116:159–61.PubMedGoogle Scholar
  16. 16.
    Maron R, Zerubavel R, Friedman A, Cohen IR. T lymphocyte line specific for thyroglobulin produces or vaccinates against autoimmune thyroiditis in mice. J Immunol. 1983;131: 2316–22.PubMedGoogle Scholar
  17. 17.
    Holoshitz J, Naparstek Y, Ben-Nun A, Cohen IR. Lines of T lymphocytes mediate or vaccinate against autoimmune arthritis. Science. 1983;219:56–8PubMedCrossRefGoogle Scholar
  18. 18.
    Haskins K, MacDuffie M. Acceleration of diabetes in young NOD mice with a CD4+ islet specific T cell clone. Science. 1990;249:1433–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Elias D, Markowitz D, Reshef T. Van der Zee R, Cohen IR. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kD heat shock protein. Proc Natl Acad Sci USA. 1990;87:1576–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Hohlfeld R, Kalies I, Ernst M, Ketelsen U-P, Wekerle H. T lymphocytes in experimental autoimmune myasthenia gravis: isolation of T helper cell lines. J Neurol Sci. 1982;57:265–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Hohlfeld R, Kalies I, Kohleisen B, Heininger K, Conti-Tronconi BM, Toyka KV. Myasthenia gravis: Stimulation of antireceptor autoantibodies by autoreactive T cell lines. Neurology. 1986;36:618–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Diamond B, Katz JB, Paul E, Aranow C, Lustgarten D, Scharff MD. The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol. 1992;10:731–57.PubMedCrossRefGoogle Scholar
  23. 23.
    Wofsy D, Seaman WE. Reversal of advanced murine lupus in NZB/NZW F1 mice with monoclonal antibody to L3T4. J Immunol. 1987;138:3247–53.PubMedGoogle Scholar
  24. 24.
    Lanzavecchia A. Identifying strategies for immune intervention. Science. 1993;260:937–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Adorini L, Barnaba V, Bona C et al. New perspectives on immunointervention in autoimmune diseases. Immunol Today. 1990;11:383–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Cohen IR. The cognitive paradigm and the immunological homunculus. Immunol Today. 1992;13:490–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Koh D-R, Fung-Leung W-P, Ho A, Gray D, Acha-Orbea H, Mak TW. Less mortality but more relapses in experimental allergic encephalomyelitis in CDB-/- mice. Science. 1992;256:1210–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Jiang H, Zhang S-L, Pernis B. Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science. 1992;256:1213–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Oldstone MBA. Molecular mimicry and autoimmune disease. Cell. 1987;50:819–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Woodland DL, Blackman MA. How do T-cell receptors, МНС molecules and superantigens get together. Immunol Today. 1993;14:208–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Röcken M, Urban JF, Shevach EM. Infection breaks T-cell tolerance. Nature. 1992;359: 79–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Ghosh S, Palmer SM, Rodrigues NR, et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nature Genet. 1993;4:404–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • H. Wekerle

There are no affiliations available

Personalised recommendations