Skip to main content

Part of the book series: Telecommunications Technology and Applications Series ((TTAP))

Abstract

Coherent lightwave communications utilize optical amplitude, phase, and frequency as information-bearing signals. Coherent optical detection, which means optical heterodyne and homodyne detection, offers receiver sensitivity improvement (Yamamato, 1980 and Okashi, et al., 1981) and frequency selectivity improvement. The first advantage will significantly affect long repeater span transmission systems and the second advantage will affect optical frequency division multiplexing (FDM) systems. These features provide a means for exploiting the vast bandwidth of single mode fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blachman, N. M. (1981) The effect of phase error on DPSK error probability, IEEE Transactions Communications, COM-29, pp. 364–365.

    Article  MathSciNet  Google Scholar 

  • Davis, A. W., Pettitt, M. J., King, J. P. and Wright, S. (1987) Phase diversity techniques for coherent optical receivers, Journal Lightwave Technology, LT-5/4, pp. 561–572.

    Article  Google Scholar 

  • Garrett, I. and Jacobsen, G. (1986) Theoretical analysis of heterodyne optical receivers for transmission systems using (semiconductor) lasers with nonnegligible linewidth, Journal Lightwave Technology, LT-4/3, pp. 323–334.

    Article  Google Scholar 

  • Glance, B. (1986) Performance of homodyne detection of binary PSK optical signals, Journal Lightwave Technology, LT-4, pp. 228–235.

    Article  Google Scholar 

  • Iwashita, K. and Matsumoto, T. (1987) Modulation and detection characteristics of optical contiguous phase FSK transmission systems, Journal Lightwave Technology, LT-5/4, pp. 452–460.

    Article  Google Scholar 

  • Kazovsky, L. G. (1985) Decision-driven phase-locked loop for optical homodyne receivers: performance analysis and laser linewidth requirements, Journal Lightwave Technology, LT-3/6, pp. 1238–1247.

    Article  Google Scholar 

  • Kazovsky, L. G. (1986) Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements, Journal Lightwave Technology, LT-4/2, pp. 182–195, Feb.

    Article  Google Scholar 

  • Kazovsky, L. G. (1986) Performance analysis and laser linewidth requirements for optical PSK heterodyne communications systems, Journal Lightwave Technology, LT-4/4, pp. 415–425.

    Article  Google Scholar 

  • Nicholson, G. (1984) Probability of error for optical heterodyne DPSK systems with quantum phase noise, Electronics Letters, 20/24, pp. 1005–1007.

    Article  Google Scholar 

  • Norimatsu, S. and Iwashita, K. (1992) Linewidth requirements for optical synchronous detection systems with nonnegligible loop delay time, Journal Lightwave Technology, 10/3, pp. 341–349.

    Article  Google Scholar 

  • Okoshi, T., Emura, K., Kikuchi, K. and Kersten, R. T. (1981) Computation of bit-error rate of various heterodyne and coherent-type optical communications schemes, Journal Optical Communications, 2/3, pp. 89–96.

    Google Scholar 

  • Prabhu, V. K. (1976) PSK performance with imperfect carrier recovery, IEEE Transactions Aerospace Electronics Systems, AES-12/2, pp. 275–285.

    Article  Google Scholar 

  • Schwartz, M., Bennett, W. R. and Stein, S. (1966) Communication Systems and Techniques, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Yamamoto, Y. (1980) Receiver performance evaluation of various digital optical modulation-demodulation systems in the 0.5-10 μm wavelength region, IEEE Journal Quantum Electronics, QE-16/11, pp. 1251–1259, Nov.

    Article  Google Scholar 

  • Yamamoto, Y. and Kimura, T. (1981) Coherent optical fiber transmission systems, IEEE Journal Quantum Electronics, QE-17, pp. 919–934.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Sadakuni Shimada

About this chapter

Cite this chapter

Iwashita, K. (1995). Theory of optical coherent detection. In: Shimada, S. (eds) Coherent Lightwave Communications Technology. Telecommunications Technology and Applications Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1308-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1308-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-57940-0

  • Online ISBN: 978-94-011-1308-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics