Skip to main content

Molecular biology of superoxide dismutase

  • Chapter
Plant Responses to the Gaseous Environment

Abstract

Molecular oxygen (or dioxygen) is found everywhere in our environment and is at once essential for aerobic life and toxic to living cells. Oxygen toxicity is due primarily to the reactivities of chemical derivatives (activated oxygen species) of dioxygen, rather than to molecular oxygen itself. During the normal reduction of dioxygen (O2) to water, a variety of activated oxygen species is generated and encountered by the cell. In addition, there are various environmental factors (e.g., radiation, air pollutants, herbicides, etc.) that directly, or indirectly, increase the intracellular production of active oxygen causing the condition known as oxidative stress. Thus in biological systems, active oxygen species can be generated by a variety of substances and mechanisms. Excitation of O2 to the singlet states can be achieved when some pigments are illuminated in the presence of O2. In such instances, the pigment absorbs light, enters a higher electronic excitation state, and transfers energy onto O2 to make singlet oxygen (O2 1) which is likely to occur in any pigmented system exposed to light such as the illuminated chloroplast (Halliwell, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alscher, R., Franz, M. & Jeske, C. (1987). Sulfur dioxide and chloroplast metabolism. In Phytochemical Effects of Environmental Compounds, ed. J. Saunders, L. Channing & C. Conn. Plenum, New York, pp. 1–28.

    Chapter  Google Scholar 

  • Asada, K., Yoshikawa, K., Takahashi, M., Maeda, Y. & Enamanji, K. (1975). Superoxide dismutases from a blue-green alga, Plectonema boryanum. J. Biol. Chem., 250, 2801–2807.

    CAS  Google Scholar 

  • Baum, J.A. & Scandalios, J.G. (1979). Developmental expression and intracellular localization of Superoxide dismutases in maize. Differentiation, 13, 133–140.

    Article  CAS  Google Scholar 

  • Baum, J.A. & Scandalios, J.G. (1981). Isolation and characterization of the cytosolic and mitochondrial Superoxide dismutases of maize. Arch, Biochem. Biophys., 209, 249–264.

    Article  Google Scholar 

  • Baum, J.A. & Scandalios, J.G. (1982a). Multiple genes controlling Superoxide dismutase expression in maize. J. Hered., 73, 95–100.

    CAS  Google Scholar 

  • Baum, J.A. & Scandalios, J.G. (1982b). Expression of genetically distinct Superoxide dismutases in the maize seedling during development. Dev. Genet., 3, 7–23.

    Article  CAS  Google Scholar 

  • Baum, J.A., Chandlee, J.M. & Scandalios, J.G. (1983). Purification and partial characterization of a genetically defined Superoxide dismutase (SOD-1) associated with maize chloroplasts. Plant Physiol., 73, 31–35.

    Article  CAS  Google Scholar 

  • Bowler, C., Alliote, T., De loose, M., Van Montagu, M. & Inzé, D. (1989). The induction of manganese Superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J., 8, 31–38.

    CAS  Google Scholar 

  • Britton, L., Malinowski, D.P. & Fridovich, I. (1978). Superoxide dismutase and oxygen metabolism in Streptococcus faecalis and comparison with other organisms. J. Bacteriol., 134, 229–236.

    CAS  Google Scholar 

  • Cannon, R.E. & Scandalios, J.G. (1989). Two cDNAs encode two nearly identical Cu/Zn Superoxide dismutase proteins in maize. Mol. Gen. Genet., 219, 1–8.

    Article  CAS  Google Scholar 

  • Cannon, R.E., White, J.A. & Scandalios, J.G. (1987). Cloning cDNA for maize Superoxide dismutase 2 (SOD-2). Proc. Natl. Acad Sci. USA, 84, 179–183.

    Article  CAS  Google Scholar 

  • Charles, S. & Halliwell, B. (1981). Light activation of fructose bisphosphatase in isolated spinach chloroplasts and deactivation by hydrogen peroxide—a physiological role for the thioredoxin system. Planta, 151, 242–246.

    Article  CAS  Google Scholar 

  • Daub, M.E. & Hangarter, R.P. (1983). Production of singlet oxygen and Superoxide by the fungal toxin, cercosporin. Plant Physiol., 73, 855–857.

    Article  CAS  Google Scholar 

  • Duke, M.V. & Salin, M.L. (1985). Purification and characterization of an iron-containing Superoxide dismutase from the eucaryote, Ginko biloba. Arch. Biochem. Biophys., 243, 305–314.

    Article  CAS  Google Scholar 

  • Fridovich, I. (1986). Superoxide dismutases. Adv. Enzymol., 58, 62–97.

    Google Scholar 

  • Fucci, L., Oliver, C., Coon, M. & Stadtman, E. (1983). Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and aging. Proc. Natl. Acad. Sci. USA, 80, 1521–1525.

    Article  CAS  Google Scholar 

  • Gralla, E.B. & Kossman, D.J. (1992). Molecular genetics of Superoxide dismutases in yeasts and related fungi. Adv. Genet., in press.

    Google Scholar 

  • Haffner, P.H. & Coleman, J.E. (1973). Cu(II)-carbon bonding in cyanide complexes of copper enzymes: 13C splitting of the Cu(II) electron spin resonance. J. Biol. Chem., 248, 6626–6629.

    CAS  Google Scholar 

  • Halliwell, B. (1982). The toxic effects of oxygen on plant tissues. In Superoxide Dismutase, Vol. 1, ed. L. Oberley. CRC Press, Boca Raton, Florida, pp. 89–124.

    Google Scholar 

  • Halliwell, B. & Gutteridge, J.M.C. (1985). The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med., 8, 89–193.

    Article  CAS  Google Scholar 

  • Hassan, H.M. & Fridovich, I. (1980). Superoxide dismutases: Detoxification of a free radical. In Enzymatic Basis of Detoxification, Vol. 1, ed. W.B. Jakoby. Academic Press, New York, pp. 311–322.

    Google Scholar 

  • Hassan, H. & Scandalios, J.G. (1990). Superoxide dismutases in aerobic organisms. In Stress Responses in Plants: Adaptation and Acclimation Mechanisms, ed. R. Alscher. Wiley-Liss, New York, pp. 175–199.

    Google Scholar 

  • Hodgson, E.K. & Fridovich, I. (1975). The interaction of bovine erythrocyte Superoxide dismutase with hydrogen peroxide: Inactivation of the enzyme. Biochemistry, 14, 5294–5299.

    Article  CAS  Google Scholar 

  • Kanematsu, S. & Asada, K. (1979). Ferric and manganic Superoxide dismutases in Euglena gracilis. Arch. Biochem. Biophys., 195, 535–545.

    Article  CAS  Google Scholar 

  • Kanematsu, S. & Asada, K. (1989). Cu/Zn-superoxide dismutases in rice: Occurrence of an active, monomeric enzyme and two types of isozymes in leaf and non-photosynthetic tissues. Plant Cell Physiol., 30, 381–391.

    CAS  Google Scholar 

  • Kanematsu, S. & Asada, K. (1990). Characteristic amino acid sequences of chloroplast and cytosol isozymes of Cu/Zn-superoxide dismutase in spinach, rice and horsetail. Plant Cell Physiol., 31, 99–112.

    CAS  Google Scholar 

  • Larson, R.A. (1988). The antioxidants of higher plants. Phytochemistry, 27, 969–978.

    Article  CAS  Google Scholar 

  • Lee, E. & Bennett, J. (1982). Superoxide dismutase: A possible protective enzyme against ozone injury in snap beans (Phaseolus vulgaris). Plant Physiol., 69, 1444–1449.

    Article  CAS  Google Scholar 

  • Matheson, I.B.C., Etheridge, R.D., Kratowich, N.R. & Lee, J. (1975). The quenching of singlet oxygen by amino acids and proteins. Photochem. Photobiol., 21, 165–171.

    Article  CAS  Google Scholar 

  • Matters, G.L. & Scandalios, J.G. (1986). Effect of the free radical-generating herbicide paraquat on the expression of the Superoxide dismutase (SOD) genes in maize. Biochim. Biophys. Acta, 882, 29–38.

    Article  CAS  Google Scholar 

  • Matters, G.L. & Scandalios, J.G. (1987). Synthesis of isozymes of Superoxide dismutase in maize leaves in response to O3, SO2 and elevated O2. J. Exptl. Bot., 38, 842–852.

    Article  CAS  Google Scholar 

  • McCord, J.M. & Day, E.D., Jr. (1978). Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett., 86, 139–142.

    Article  CAS  Google Scholar 

  • Perl-Treves, R., Nacmias, B., Aviv, D., Zeelon, E. & Galun, E. (1988). Isolation of two cDNA clones from tomato containing two different Superoxide dismutase sequences. Plant Mol. Biol, 11, 609–623.

    Article  CAS  Google Scholar 

  • Puget, K. & Michelson, AM. (1974). Isolation of a new copper-containing Superoxide dismutase, bacteriocuprein. Biochem. Biophys. Res. Commun., 58, 830–838.

    Article  CAS  Google Scholar 

  • Rabinowitch, H.D. & Fridovich, I. (1983). Superoxide radicals, Superoxide dismutases and oxygen toxicity in plants. Phytochem. Photobiol., 37, 679–690.

    Article  CAS  Google Scholar 

  • Rabinowitch, H.D. & Sklan, D. (1980). Superoxide dismutase: A possible protective agent against sunscald in tomatoes. Planta, 148, 162–167.

    Article  CAS  Google Scholar 

  • Ravindranath, S.D. & Fridovich, I. (1975). Isolation and characterization of a manganese-containing Superoxide dismutase from yeast. J. Biol. Chem., 250, 6107–6112.

    CAS  Google Scholar 

  • Richardson, J.S., Thomas, K.A., Rubin, B.H. & Richardson, D.C. (1975). Crystal structure of bovine Cu/Zn Superoxide dismutase at 3 Ã… resolution: Chain tracing and metal ligands. Proc. Natl. Acad. Sci. USA, 72, 1349–1353.

    Article  CAS  Google Scholar 

  • Rotilio, G., Bray, R.C. & Fieldin, E.M. (1972). A pulse radiolysis study of Superoxide dismutase. Biochim. Biophys. Acta, 268, 605–609.

    Article  CAS  Google Scholar 

  • Salin, M.L. & Bridges, S.M. (1980). Isolation and characterization of an iron-containing Superoxide dismutase from a eukaryote, Brassica campestris. Arch. Biochem. Biophys., 201, 369–374.

    Article  CAS  Google Scholar 

  • Salin, M.L. & Bridges, S.M. (1981). Absence of the iron-containing Superoxide dismutase in mitochondria from mustard (Brassica campestris). Biochem. J., 195, 229–233.

    CAS  Google Scholar 

  • Sandalio, L.M. & Del Rio, L.A. (1988). Intraorganellar distribution of Superoxide dismutase in plant peroxisomes. Plant Physiol., 88, 1215–1218.

    Article  CAS  Google Scholar 

  • Sato, S. & Harris, J.I. (1977). Superoxide dismutase from Thermus aquaticus: Isolation and characterization of manganese and apoenzymes. Eur. J. Biochem., 73, 373–381.

    Article  CAS  Google Scholar 

  • Scandalios, J.G. (1990). Response of plant antioxidant defense genes to environmental stress. Adv. Genet., 28, 1–41.

    Article  CAS  Google Scholar 

  • Scandalios, J.G. (1992a). Molecular Biology of Free Radical Scavenging Systems. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Scandalios, J.G. (1992b). Regulation and properties of plant catalases. In Photooxidative Stresses on Plants: Causes and Amelioration, ed. C. Foyer & P. Mullineaux. CRC Press, Boca Raton, Florida, in press.

    Google Scholar 

  • Scioli, J.R. & Zilinskas, B. (1988). Cloning and characterization of a cDNA encoding the chloroplastic copper/zinc-superoxide dismutase from pea. Proc. Natl.Acad. Sci. USA, 85, 7661–7665.

    Article  CAS  Google Scholar 

  • Simonyan, M.A. & Nalbandyan, R.M. (1972). Interaction of hydrogen peroxide with Superoxide dismutase from erythrocytes. FEBS Lett., 28, 22–24.

    Article  CAS  Google Scholar 

  • Stallings, W.C., Pattridge, K.A., Strong, R.K. & Ludwig, M.L. (1984). Manganese and iron Superoxide dismutase are structural homologs. J. Biol. Chem., 259, 10695–10699.

    CAS  Google Scholar 

  • Steinman, H.M. (1982). Copper-zinc Superoxide dismutase from Caulobacter crescentus CB15. A novel bacteriocuprein form of the enzyme. J. Biol. Chem., 257, 10283–10293.

    CAS  Google Scholar 

  • Steinman, H.M. (1985). Bacteriocuprein Superoxide dismutases in Pseudomonads. J. Bacteriol., 162, 1255–1260.

    CAS  Google Scholar 

  • Tanaka, K. & Sugahara, K. (1980). Role of Superoxide dismutase in defense against SO2 toxicity and an increase in Superoxide dismutase activity with SO2 fumigation. Plant Cell Physiol., 21, 601–611.

    CAS  Google Scholar 

  • Tepperman, J., Katayama, C. & Dunsmuir, P. (1988). Cloning and nucleotide sequence of a petunia gene encoding a chloroplast-localized Superoxide dismutase. Plant Mol. Biol., 11, 871–872.

    Article  CAS  Google Scholar 

  • Van Camp, W., Bowler, C., Villarrael, R., Tsang, F. & Van Montagu, M. (1990). Characterization of FeSOD cDNAs from plants obtained by genetic complementation in E. coli. Proc. Natl. Acad. Sci. USA, 87, 9903–9907.

    Article  Google Scholar 

  • van Loon, A.P., Hurt, B. & Schatz, G. (1986). A yeast mutant lacking mitochondrial MnSOD is hypersensitive to oxygen. Proc. Natl. Acad. Sci. USA, 83, 5549–5553.

    Article  Google Scholar 

  • Vignais, P.M., Terech, A., Meyer, C.M. & Henry, M.F. (1982). Isolation and characterization of a protein with cyanide-sensitive Superoxide dismutase activity from the prokaryote Paracoccus denitrificans. Biochim. Biophys. Acta, 701, 305–317.

    Article  CAS  Google Scholar 

  • von Sonntag, C. (1987). The Chemical Basis of Radiation Biology. Taylor and Francis, London.

    Google Scholar 

  • White, J.A. & Scandalios, J.G. (1987). In vitro synthesis, importation and processing of Mn-superoxide dismutase (SOD-3) into maize mitochondria. Biochim. Biophys. Acta, 926, 16–25.

    Article  CAS  Google Scholar 

  • White, J.A. & Scandalios, J.G. (1988). Isolation and characterization of a cDNA for mitochondrial manganese Superoxide dismutase (SOD-3) of maize and its relation to other manganese Superoxide dismutases. Biochim. Biophys. Acta, 951, 61–70.

    Article  CAS  Google Scholar 

  • White, J.A. & Scandalios, J.G. (1989). Deletion analysis of the maize mitochondrial Superoxide dismutase transit peptide. Proc. Natl. Acad Sci. USA, 86, 3534–3538.

    Article  CAS  Google Scholar 

  • Williamson, J.D. & Scandalios, J.G. (1992). Differential response of maize catalases and Superoxide dismutases to the photoactivated fungal toxin cercosporin. Plant J., 2, 351–358.

    CAS  Google Scholar 

  • Wong-Vega, L., Burke, J.J. & Allen, R.D. (1991). Isolation and sequence analysis of a cDNA that encodes pea manganese Superoxide dismutase. Plant Mol. Biol., 17, 1271–1274.

    Article  CAS  Google Scholar 

  • Zhu, D. & Scandalios, J.G. (1992). Expression of the maize MnSOD (Sod3) gene in MnSOD-deficient yeast rescues the mutant yeast under oxidative stress. Genetics, 131, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Scandalios, J.G. (1994). Molecular biology of superoxide dismutase. In: Alscher, R.G., Wellburn, A.R. (eds) Plant Responses to the Gaseous Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1294-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1294-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4565-0

  • Online ISBN: 978-94-011-1294-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics