Advertisement

Gallium compounds in cancer therapy

  • Philippe Collery
Chapter

Abstract

Gallium is an element from Group IIIa of the periodic table, along with boron, aluminium, indium and thallium. The +3 oxidation state of this element, as the cation, is the most stable form in aqueous solution. The Ga3+ ion is classified as a hard acid, binding most strongly to highly ionic, non-polarizable Lewis bases (Domingo and Corbella, 1991). The general coordination chemistry of Ga3+ is very similar to that of the high-spin Fe3+ ion, due to their similar charge, ionic radius, coordination number and electronic configuration (Bradley, 1962; Greenwood, 1963; Green and Welch, 1989). Two radioisotopes, 67Ga and 68Ga, possess nuclear properties, and 67Ga has been widely used in nuclear medicine imaging (Edwards and Hayes, 1969). The in vivo antitumour effects of the stable 69Ga3+ ion were described for the first time by Hart and Adamson (1971).

Keywords

Lung Cancer Patient Ribonucleotide Reductase Parathyroid Carcinoma Human Amnion Southwest Oncology Group Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, R. H., Canellos, G. P. and Sieber, S. M. (1975) Studies on the antitumor activity of gallium nitrate and other group IIIa metal salts. Cancer Chemother. Rep., 59, 599–610.PubMedGoogle Scholar
  2. Anghileri, L. J. (1975) On the antitumor activity of gallium and lanthanides. Arzneim. Forsch., 25, 793–795.Google Scholar
  3. Anghileri, L. J. (1983) In vivo distribution of 67 gallium and III indium complexes with transferrin: uptake by DS sarcoma tumors. J. Nucl. Med. Allied Sci., 27, 17–20.PubMedGoogle Scholar
  4. Anghileri, L. J. and Robert, J. (1982) Isomorphous ionic replacement: experimental evidence for the hypothesis proposed to explain gallium-67 accumulation. J. Nucl Med. Allied Sci., 26, 113–115.PubMedGoogle Scholar
  5. Bara, M., Guiet-Bara, A., Collery, P. and Durlach, J. (1985) Gallium action on the ionic transfer through the isolated human amnion. I. Effect on the amnion as a whole and interaction between Gallium and Magnesium. Trace Eletn. Med., 2, 99–102.Google Scholar
  6. Bara, M., Guiet-Bara, A., Durlach, J. and Collery, Ph. (1990a) Comparative effects of a carcinogenic (As) and an anticancer (Ga) metal on the transfer through the human amnion. Relationship with Mg. Ultrastructural and electro-physiological studies, in Metal Ions in Biology and Medicine, Vol. 1 (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Euro text, Paris, pp. 570–572.Google Scholar
  7. Bara, M., Guiet-Bara, A., Durlach, J. and Collery, Ph. (1990b) Modification of the human transamniotic transfer after addition of anti-cancer metals. J. Trace Eletn. Electrolytes Health Dis., 4, 203–207.Google Scholar
  8. Bara, M., Guiet-Bara, A., Durlach, J. and Collery, P. (1992) Gallium action on the ionic transfer through the isolated human amnion. II. Effect on cellular and paracellular pathways. Trace Elem. Med., 9, 117–122.Google Scholar
  9. Basset, P., Zwiller, J., Revel, M. O. and Vincendon, G. (1985) Growth promotion of transformed cells by iron in serum-free culture. Carcinogenesis, 6, 355–359.PubMedCrossRefGoogle Scholar
  10. Bedikian, A. Y., Valdivieso, M., Bodey, G. P. et al. (1978) Phase I clinical studies with gallium nitrate. Cancer Treat. Rep., 62, 1449–1453.PubMedGoogle Scholar
  11. Berggren, M. M., Burns, L. A., Abraham, R. T. and Powis, G. (1993) Inhibition of protein tyrosine phosphatase by the antitumor agent gallium nitrate. Cancer Res., 53, 1862–1866.PubMedGoogle Scholar
  12. Bockman, R. S., Boskey, A. L., Blumenthal, N. C. et al. (1986) Gallium increases bone calcium and crystallite perfection of hydroxyapatite. Calcif. Tissue Int., 39, 376–381.PubMedCrossRefGoogle Scholar
  13. Bockman, R. S., Adelman, R., Donnell, Y. et al. (1990) Gallium, a unique anti-resorptive agent in bones: preclinical studies on its mechanisms of action, in Metal Ions in Biology and Medicine (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Eurotext, Paris, 426–431.Google Scholar
  14. Bradley, D. C. (1962) The stereochemistry of some elements of Group III. Prog. Stereochem., 3, 1–52.Google Scholar
  15. Cahuzac, A. M., Caujolee, F., Maurel, E. and Voisin, C. (1971) Intoxications expérimentales aigües par le sulfate de gallium. CR Soc. Biol. (Paris), 165, 724–728.Google Scholar
  16. Canfield, V. and Lyss, A. P. (1991) Gallium nitrate (GaN) in metastatic colorectal cancer: preliminary results of a phase II study. Proc. ASCO, 10, 159 (Abstract 504).Google Scholar
  17. Capel, I. D., Dorrell, H. M., Pinnock, M. H. et al. (1981) The influence of zinc status on the anti-Lewis lung tumour activity of cisplatin and gallium. Anticancer Res., 1, 269–274.PubMedGoogle Scholar
  18. Carpentier, Y., Liautaud-Roger, F., Labbe, F. et al. (1987) Effect of gallium at two phases of the CA 755 tumour growth. Anticancer Res., 7, 745–748.PubMedGoogle Scholar
  19. Carpentier, Y., Liautaud-Roger, F., Collery, Ph. et al. (1990). Effect of gallium on the cell cycle of tumor cells in vitro, in Metal Ions in Biology and Medicine, Vol. 1 (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Euro text, Paris, pp. 406–408.Google Scholar
  20. Casper, E. S., Stanton, G. F., Sordillo, P. P. et al. (1985) Phase II trial of gallium nitrate in patients with advanced malignant melanoma. Cancer Treat. Rep., 69, 1019–1020.PubMedGoogle Scholar
  21. Chappuis, P., Collery, Ph., Labbe, F. et al (1984) Distribution et action antitumorale du gallium chez la souris atteinte d’une tumeur Ca 755. Acta Pharm. Biol Clin., 3, 148–151.Google Scholar
  22. Chitambar, C. R. and Seligman, P. A. (1986) Effects of different transferrin forms on transferrin receptor expression, iron uptake, and cellular proliferation of human leukemic HL60 cells. Mechanisms responsible for the specific cytotoxicity of transferrin-gallium. J. Clin. Invest., 78, 1538–1546.PubMedCrossRefGoogle Scholar
  23. Chitambar, C. R. and Zivkovic, Z. (1987) Inhibition of hemoglobin production by transferrin-gallium. Blood, 69, 144–149.PubMedGoogle Scholar
  24. Chitambar, C., Zivkovic, Z. and Abrams, R. (1986) Effect of gallium on hemoglobin production. Proc. ASCO, 5, 44.Google Scholar
  25. Chitambar, C. R., Matthaeus, W. G., Antholine, W. E. et al. (1988) Inhibition of leukemic HL60 cell growth by transferrin-gallium: effects on ribonucleotide reductase and demonstration of drug synergy with hydroxyurea. Blood, 72, 1930–1936.PubMedGoogle Scholar
  26. Chitambar, C. R., Zivkovic-Gilgenbach, Z., Narasimhan, J. and Antholine, W. E. (1990) Development of drug resistance to gallium nitrate through modulation of iron uptake. Cancer Res., 50, 4468–4472.PubMedGoogle Scholar
  27. Collery, Ph. and Pechery, C. (1993) Clinical experience with tumor-inhibiting gallium complexes, in Metal Complexes in Cancer Chemotherapy (ed. B. K. Keppler), VCH, Weinheim, pp. 249–258.Google Scholar
  28. Collery, Ph. and Perdu, D. (1992) Bone reconstruction of a lytic rib metastase after chemotherapy with cisplatinum, etoposide and gallium in a lung cancer patient, in Metal Ions in Biology and Medicine, Vol. 2 (eds J. Anastassopoulou, Ph. Collery, J. C. Etienne and Th. Theophanides), John Libbey Eurotext, Paris, pp. 180–181.Google Scholar
  29. Collery, Ph., Coudoux, P. and Geoffroy, H. (1978) Role of magnesium in the development of cancer, in Trace Substances in Environmental Health, Vol. 12 (ed. D. D. Hemphill), Columbia, Missouri, pp. 140–147.Google Scholar
  30. Collery, Ph., Rinjard, P. and Pechery, C. (1990) Effect of gallium chloride on inflammation and experimental polyarthritis, in Metal Ions in Biology and Medicine, Vol. 1 (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Euro text, Paris, pp. 443–444.Google Scholar
  31. Collery, Ph., Millart, H., Simoneau, J. P. et al. (1983) Selective uptake of gallium administered orally, as chloride, by tumor cells, in New Concepts in Cancer Chemotherapy, Proc. 13th International Congress of Chemotherapy, Vienna, (eds K. H. Spitzy and K. Karrer), pp. 35-43.Google Scholar
  32. Collery, Ph., Millart, H., Simoneau, J.-P. et al. (1984a) Experimental treatment of mammary carcinomas by Gallium chloride after oral administration: intratumor dosages of Gallium, anatomopathologic study and intracellular micro-analysis. Trace Elem. Med., 1, 159–161.Google Scholar
  33. Collery, Ph., Millart, H., Pourny, C. et al. (1984b) Pharmacokinetics of gallium after oral administration. Session 42 on anticancer and antibacterial chemotherapy, chaired by R. F. Novak and J. C. Shaw. Proceedings of IUPHAR 9th International Congress of Pharmacology, MacMillan Press, London, Abstract 501.Google Scholar
  34. Collery, Ph., Millart, H., Ferrand, O. et al. (1985) Gallium chloride treatment of cancer patients after oral administration. A pilot study. Chemiotherapia, 4, 1165–1166.Google Scholar
  35. Collery, Ph., Millart, H., Pluot, M. and Anghileri, L. J. (1986) Effects of gallium chloride oral administration on transplanted C3HBA mammary adenocarci-noma: Ga, Mg, Ca and Fe concentrations and anatomopathological characteristics. Anticancer Res., 6, 1085–1088.PubMedGoogle Scholar
  36. Collery, Ph., Millart, H., Choisy, H. et al. (1989a) Magnesium alterations and pharmacokinetic data in gallium treated lung cancer patients. Magnesium, 8, 56–64.PubMedGoogle Scholar
  37. Collery, Ph., Millart, H., Lamiable, D. et al. (1989b) Clinical pharmacology of gallium chloride after oral administration in lung cancer patients. Anticancer Res., 9, 353–356.PubMedGoogle Scholar
  38. Collery, Ph., Morel, M., Millart, H. et al. (1990a) Oral administration of gallium in conjunction with platinum in lung cancer treatment, in Metal Ions in Biology and Medicine, Vol. 1 (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Eurotext, Paris, pp. 437–442.Google Scholar
  39. Collery, Ph., Vistelle, R., Arsac, F. et al. (1990b) Effects of GaCl3-CDDP combination on the intratissular concentrations of Ga, Pt, Mg, Fe and Ca in healthy mice, in Metal Ions in Biology and Medicine, Vol. 1 (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Eurotext, Paris, pp. 412–414.Google Scholar
  40. Collery, Ph., Morel, M., Desoize, B. et al. (1991) Combination chemotherapy with cisplatin, etoposide and gallium chloride for lung cancer: individual adaptation of doses. Anticancer Res., 11, 1529–1532.PubMedGoogle Scholar
  41. Collery, Ph., Anghileri, L. J., Morel, M. et al. (1992a) Tumor growth inhibition by gallium chloride after oral administration in tumor-bearing mice, in Metal Ions in Biology and Medicine, Vol. 2 (eds J. Anastassopoulou, Ph. Collery, J. C. Etiene and Th. Theophanides), John Libbey Eurotext, Paris, pp. 176–177.Google Scholar
  42. Collery, Ph., Millart, H., Choisy, H. et al. (1992b) Dose-effect of GaCl3, orally administered, on gallium, magnesium, calcium and iron concentrations in tumour and kidneys of mammary adenocarcinoma-bearing mice. Anticancer Res., 12, 1920–1921 (Abstract 467).Google Scholar
  43. Collery, Ph., Millart, H., Pechery, C. et al. (1992c) New gallium complexes for cisplatin combination therapy, in Metal Ions in Biology and Medicine, Vol. 2 (eds J. Anastassopoulou, Ph. Collery, J. C. Etienne and Th. Theophanides), John Libbey Eurotext, Paris, pp. 173–175.Google Scholar
  44. Collery, Ph., Vallerand, H., Prevost, A. et al. (1992d) Therapeutic index of gallium, orally administered, as chloride, in combination with cisplatinum and etoposide in lung cancer patients, in Metal Ions in Biology and Medicine, Vol. 2 (eds J. Anastassopoulou, Ph. Collery, J. C. Etienne and Th. Theophanides), John Libbey Eurotext, Paris, pp. 167–172.Google Scholar
  45. Collery, Ph., Blanchot, G., Leroy, A. et al. (1993) Etude de l’activité du GaCl3 chez le rat dans l’inflammation et dans la prévention de la polyarthrite expérimentale à adjuvant, in Actualités en Physiopathologie et Pharmacologie Articulaires, Série 3 (eds A. Gaucher, P. Netter, J. Pourel et al), Masson, Paris, pp. 102–108.Google Scholar
  46. Cournot-Witmer, G., Bourdeau, A., Lieberherr, M. et al. (1978) Bone modeling in gallium nitrate-treated rats. Calcif. Tissue Int., 40, 270–275.CrossRefGoogle Scholar
  47. Danieu, L., Atkins, C., Sykes, M. and Warrell, R. P. (1985) Gallium nitrate, methyl-GAG and etoposide: an effective investigational combination for relapsed lymphoma. Proc. ASCO, 4, 209.Google Scholar
  48. Decker, D. A., Costanzi, J. J., McCracken, J. D. and Baker, L. H. (1984) Evaluation of gallium nitrate in metastatic or locally recurrent squamous cell carcinoma of the head and neck: a southwest oncology group study. Cancer Treat. Rep., 68, 1047–1048.PubMedGoogle Scholar
  49. Domingo, J. L. and Corbella, J. (1990) A review of the pharmacological and toxicological properties of gallium, in Metal Ions in Biology and Medicine, Vol. 1 (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Eurotext, Paris, pp. 415–419.Google Scholar
  50. Domingo, J. L. and Corbella, J. (1991) A review of the health hazards from gallium exposure. Trace Elem. Med., 8, 56–64.Google Scholar
  51. Domingo, J. L., Llobet, J. M. and Corbella, J. (1987) Acute toxicity of gallium in rats and mice. J. Toxicol. Clin. Exp., 7, 411–418.PubMedGoogle Scholar
  52. Durlach, J., Bara, M., Guiet-Bara, A. and Collery, Ph. (1986) Relationship between magnesium, cancer and carcinogenic or anticancer met al. Anti-cancer Res., 6, 1085–1088.Google Scholar
  53. Edwards, C. L. and Hayes, R. L. (1969) Tumor scanning with 67 Ga-citrate. J. Nucl.Med., 10, 103–105.PubMedGoogle Scholar
  54. Fabian, C. J., Baker, L. H., Vaughn, C. B. and Hynes, H. E. (1982) Phase II evaluation of gallium nitrate in breast cancer: a southwest oncology group study. Cancer Treat. Rep., 6, 1591.Google Scholar
  55. Green, M. A. and Welch, M. J. (1989) Gallium radiopharmaceutical chemistry. Nucl.Med.Biol., 16, 435–448.Google Scholar
  56. Greenwood, N. N. (1963) The chemistry of gallium. Adv. Inorg. Chem. Radiochem., 5, 91–134.CrossRefGoogle Scholar
  57. Hall, T. J. and Chambers, T. J. (1990) Gallium inhibits bone resorption by a direct effect on osteoclasts. Bone Mineral, 8, 211–216.CrossRefGoogle Scholar
  58. Hall, S. W., Yeung, K., Benjamin, R. S. et al. (1979) Kinetics of gallium nitrate, a new anticancer agent. Clin. Pharmacol. Ther., 25, 82–87.PubMedGoogle Scholar
  59. Hann, H. W. L., Stahlhut, M. W., Menduke, H. and Mendule, H. (1991) Iron enhances tumor growth. Observation on spontaneous mammary tumors in mice. Cancer, 68, 2407–2410.PubMedCrossRefGoogle Scholar
  60. Hart, M. M. and Adamson, R. H. (1971) Antitumor activity and toxicity of salts of inorganic group IIIa metals: aluminium, gallium, indium and thallium. Proc. Natl Acad. Sci. USA, 68, 1623–1626.PubMedCrossRefGoogle Scholar
  61. Hart, M. M., Smith, C. F., Yancey, S. T. and Adamson, R. H. (1971) Toxicity and antitumor activity of gallium nitrate and periodically related metal salts. J. Natl Cancer Inst., 47, 1121–1127.PubMedGoogle Scholar
  62. Hedley, D. W., Tripp, E. H., Slowiaczek, P. and Mann, G. J. (1988) Effect of gallium on DNA synthesis by human T-cell lymphoblasts. Cancer Res., 48, 3014–3018.PubMedGoogle Scholar
  63. Jabboury, K., Frye, D., Holmes, F. A. et al. (1989) Phase II evaluation of gallium nitrate by continuous infusion in breast cancer. Invest. New Drugs, 7, 225–229.PubMedCrossRefGoogle Scholar
  64. Jolly, D., Collery, Ph., Millart, H. et al. (1990) Cadmium, magnesium, zinc, and copper blood concentrations in non-smokers, healthy smokers and lung cancer smokers, in Metal Ions in Biology and Medicine, Vol. 1 (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Eurotext, Paris, pp. 223–225.Google Scholar
  65. Kamine, J. and Rubin, H. (1976) Magnesium required for serum-stimulation of growth in cultures of chick embryo fibroblasts. Nature, 263, 143–144.PubMedCrossRefGoogle Scholar
  66. Kelsen, D. P., Alcock, N., Yeh, S. et al. (1980) Pharmacokinetics of gallium nitrate in man. Cancer, 46, 2009–2013.PubMedCrossRefGoogle Scholar
  67. Kovar, J., Seligman, P. and Gelfand, E. W. (1990) Differential growth-inhibitory effects of gallium on lymphocyte B-lines in high versus low iron concentrations. Cancer Res., 50, 5727.PubMedGoogle Scholar
  68. Krakoff, I. H., Newmann, R. A. and Goldberg, R. S. (1979) Clinical toxicologie and pharmacologie studies of gallium nitrate. Cancer, 44, 1722–1727.PubMedCrossRefGoogle Scholar
  69. Kubal, G., Mason, A. B., Patel, S. U. et al. (1993) Oxalate and Ga3+-induced structural changes in human serum transferrin and its recombinant N-lobe. lHNMR detection of preferential C-lobe Ga3+ binding. Biochemistry, 32, 3387–3395.PubMedCrossRefGoogle Scholar
  70. Larson, S. M. (1981) The role of transferrins in gallium uptake. Int. ]. Nucl. Med. Biol., 8, 249–255.CrossRefGoogle Scholar
  71. Leyland-Jones, B., Bhalla, R. B., Farag, F. et al. (1983) Administration of gallium nitrate by continuous infusion: lack of chronic nephrotoxicity confirmed by studies of enzymuria and β2 microglobulinuria. Cancer Treat. Rep., 67, 941–942.PubMedGoogle Scholar
  72. MacKeehan, W. L. and Ham, R. G. (1978) Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells. Nature, 275, 756–758.CrossRefGoogle Scholar
  73. Maeda, M., Nihonmatsu, H., Kawagoshi, T. et al. (1990) Enhancing effects of isoprenoid (L-623) on accumulation of Ga-67 in mice tumor cells, in Metal Ions in Biology and Medicine, Vol. 1 (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Eurotext, Paris, pp. 409–411.Google Scholar
  74. Malfetano, J. H., Blessing, J. A. and Adelson, M. D. (1991) A phase II trial of gallium nitrate in previously treated ovarian carcinoma. Am. J. Clin. Oncol., 14, 349–351.PubMedCrossRefGoogle Scholar
  75. Manfait, M. and Collery, Ph. (1983) The role of gallium and magnesium in cancer cells. A preliminary study of these ions on the in vitro DNA conformation by Raman spectroscopy, in New Concepts of Cancer Research: Molecular and Experimental Aspects, Proc. 13th International Congress of Chemotherapy, Vienna (eds K. H. Spitzy and K. K. Karrer), pp. 8-11.Google Scholar
  76. Matkovic, V., Apseloff, G., Shepard, D. R. and Gerber, N. (1990) Use of gallium to treat Paget’s disease of bone: a pilot study. Lancet, 335, 72–75.PubMedCrossRefGoogle Scholar
  77. Millot, J. M., Morjani, H., Collery, Ph. et al (1992) Effect of gallium on anthracycline uptake in sensitive and resistant K562 cancer cells, in Metal Ions in Biology and Medicine, Vol. 2 (eds J. Anastassopoulou, Ph. Collery, J. C. Etienne and Th. Theophanides), John Libbey Eurotext, Paris, pp. 178–179.Google Scholar
  78. Moult, R. G. (1989) Altered biodistribution of Ga-67 by intramuscular gold salts. Clin. Nucl. Med., 14, 831–833.PubMedCrossRefGoogle Scholar
  79. Newman, R. A., Brody, A. R. and Krakoff, I. H. (1979) Gallium nitrate-induced toxicity in the rat. A pharmacologie, histopathologic and microanalytical investigation. Cancer, 44, 1728–1740.PubMedCrossRefGoogle Scholar
  80. Noujaim, A. A., Terner, U. K., Turner, C. J. et al. (1981) Alterations of gallium-67 uptake in tumors by cis-platinum, Int. ]. Nucl. Med. Biol, 8, 289–293.CrossRefGoogle Scholar
  81. Oblender, M. and Carpentier, U. (1991) Control of the growth of leukemic cells (L1210) through manipulation of trace metals. Anticancer Res., 11, 1561–1564.PubMedGoogle Scholar
  82. Ohkubo, Y. (1988) The effect of FeCl3 on the accumulation of gallium-67 into inflammatory and normal tissues. Ann. Nucl Med., 2, 59–62.PubMedCrossRefGoogle Scholar
  83. Olver, I. N., Webster, L. K., Sephton, R. G. et al. (1991) A phase II study with pharmacokinetics of gallium nitrate in nonsmall cell lung cancer. Proc. AACR, 32, 1132 (Abstract).Google Scholar
  84. Otsuki, H. (1989) Comparison of iron-59, indium-III and Ga-69 transferrin as a macromolecular tracer of vascular permeability and the transferrin receptor. J. Nucl. Med., 30, 1676–1685.PubMedGoogle Scholar
  85. Polissiou, M., Morjani, H., Collery, Ph. et al (1990) Protonation of hexamethylenetetramine by GaCl3.xH2O and growth inhibition effect on K562 cells, in Metal Ions in Biology and Medicine, Vol. 1 (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Eurotext, Paris, pp. 403–405.Google Scholar
  86. Rasey, J. S., Nelson, N. J. and Larson, S. M. (1981) Relationship of iron metabolism to tumor cell toxicity of stable gallium salts. Int. J. Nucl. Med. Biol, 8, 303–313.PubMedCrossRefGoogle Scholar
  87. Rasey, J. S., Nelson, N. J. and Larson, S. M. (1982) Tumor cell toxicity of stable gallium nitrate: enhancement by transferrin and protection by iron. Eur. J. Cancer Clin. Oncol., 18, 661–668PubMedCrossRefGoogle Scholar
  88. Rubin, H. (1975) Central role of magnesium in coordinate control of metabolism and growth in animal cells. Proc. Natl Acad. Sci. USA, 72, 3551–3555.PubMedCrossRefGoogle Scholar
  89. Rubin, H. (1982) Effect of magnesium content on density-dependent regulation of the onset of DNA synthesis in transformed 3T3 cells. Cancer Res., 42, 1761–1768.PubMedGoogle Scholar
  90. Saiki, J. H., Baker, L. H. and Stephens, R. L. (1982) Gallium nitrate in advanced soft tissue and bone sarcomas: a southwest oncology group study. Cancer Treat. Rep., 66, 1673–1674.PubMedGoogle Scholar
  91. Samson, M. K., Fraile, R. J., Baker, L. H. and O’Bryan, R. (1980) Phase I—II clinical trial of gallium nitrate. Cancer Clin. Trials, 3, 131–136.PubMedGoogle Scholar
  92. Scher, H. I., Curley, T., Geller, N. et al. (1987) Gallium nitrate in prostatic cancer: evaluation of antitumor activity and effects on bone turn-over. Cancer Treat. Rep., 71, 887–893.PubMedGoogle Scholar
  93. Schwartz, S. and Yagoda, A. (1984) Phase I-II trial of gallium nitrate for advanced hypernephroma. Anticancer Res., 4, 317–318.PubMedGoogle Scholar
  94. Seidman, A. D., Scher, H. I., Heinemann, M. H. et al. (1991a) Continuous infusion gallium nitrate for patients with advanced refractory urothelial tract tumors. Cancer, 68, 2561–2565.PubMedCrossRefGoogle Scholar
  95. Seidman, A. D., Scher, H. I., Sternberg, C. N. et al. (1991b) Gallium nitrate (GaN): an active agent in patients with refractory transitional cell carcinoma of the urothelium. Proc. ASCO, 10, 164 (Abstract 520).Google Scholar
  96. Seligman, P. A. and Crawford, E. D. (1991) Treatment of advanced transitional cell carcinoma of the bladder with constant infusion gallium nitrate. Proc. ASCO, 10, 168 (Abstract 534).Google Scholar
  97. Sephton, R. (1980) Modification of distribution of gallium 67 in man by administration of iron. Br. J. Radiol, 53, 572–575.PubMedCrossRefGoogle Scholar
  98. Sephton, R. and De Abrew, S. (1990) Mechanism of gallium uptake in tumours, in Metal Ions in Biology and Medicine, Vol. 1 (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Eurotext, Paris, pp. 393–397.Google Scholar
  99. Shukla, S. K. and Cipriani, C. (1990) IIIA group elements in early diagnosis and follow-up and in effective systemic therapy of cancer: a review of past results and suggestions for future improvement, in Metal Ions in Biology and Medicine (eds Ph. Collery, L. A. Poirier, M. Manfait and J. C. Etienne), John Libbey Euro text, Paris, pp. 533–537.Google Scholar
  100. Smith, F. W. (1981) Modification of Ga-67 citrate distribution in man following the administration of iron. Br. J. Radiol, 54, 398–402.PubMedCrossRefGoogle Scholar
  101. Tajmir-Riahi, H. A., Naoui, M. and Ahmad, R. (1992) A comparative study of calf-thymus DNA binding trivalent Al, Ga, Cr and Fe ions in aqueous solution, in Metal Ions in Biology and Medicine, Vol. 2 (eds J. Anastassopoulou, Ph. Collery, J. C. Etienne and Th. Theophanides), John Libbey Euro text, Paris, pp. 98–101.Google Scholar
  102. Todd, P. A. and Fitton, A. (1991) Gallium nitrate. A review of its pharmacological properties and therapeutic potential in cancer-related hypercalcemia. Drugs, 42, 261–273.PubMedCrossRefGoogle Scholar
  103. Valberg, L. S., Flanagan, P. R., Haist, J. et al (1981) Gastrointestinal metabolism of gallium and indium: effect of iron deficiency. Clin. Invest. Med., 4, 103–108.PubMedGoogle Scholar
  104. Valdivieso, M., Bodey, G. P. and Freireich, E. J. (1978) Initial clinical studies of gallium nitrate. Proc. AACR, 215 (Abstract 857).Google Scholar
  105. Vistelle, R., Collery, Ph. and Millart, H. (1989) In vivo distribution of gallium in healthy rats after oral administration and interactions with iron, magnesium and calcium. Trace Elem. Med., 6, 27–32.Google Scholar
  106. Vogh, B. P., Godman, D. R. and Maren, T. H. (1985) Aluminium and gallium arrest formation of cerebrospinal fluid by the mechanism of OH-depletion. J. Pharm. Exp. Ther., 233, 715–721.Google Scholar
  107. Waalkes, T. P., Sanders, K., Smith, R. G. and Adamson, R. G. (1974) DNA polymerases of Walker 256 carcinosarcoma. Cancer Res., 34, 385–391.PubMedGoogle Scholar
  108. Warrell, R. P. and Bockman, R. S. (1990) Gallium for bone loss in cancer and metabolic bone diseases, in Metal Ions in Biology and Medicine (eds Ph. Collery, L. A. Poirer, M. Manfait and J. C. Etienne), John Libbey Eurotext, Paris, pp. 432–436.Google Scholar
  109. Warrell, R. P., Alcock, N. W. and Bockman, R. S. (1988) Gallium nitrate inhibits accelerated bone turn-over in patients with bone metastases. J. Clin. Oncol., 5, 292–298.Google Scholar
  110. Warrell, R. P., Coonley, C. J., Strauss, D. J. and Young, C. W. (1983) Treatment of patients with advanced malignant lymphoma using gallium nitrate administered as a seven-day continuous infusion. Cancer, 51, 1982–1987.PubMedCrossRefGoogle Scholar
  111. Warrell, R. P., Isaacs, M., Coonley, C. J. et al. (1985) Metabolic effects of gallium nitrate administered by prolonged infusion. Cancer Treat. Rep., 69, 653–655.PubMedGoogle Scholar
  112. Warrell, R. P., Skelos, A., Alcock, N. W. and Bockman, R. S. (1986) Gallium nitrate for acute treatment of cancer-related hypercalcemia: clinico-pharmacological and dose response analysis. Cancer Res., 46, 4208–4212.PubMedGoogle Scholar
  113. Warrell, R. P., Isaacs, M., Alcock, W. and Bockman, R. S. (1987a) Gallium nitrate for treatment of refractory hypercalcemia from parathyroid carcinoma. Ann. Intern. Med., 107, 683–686.PubMedGoogle Scholar
  114. Warrell, R. P., Danieu, L., Coonley, C. J. and Atkins, C. (1978b) Salvage chemotherapy of advanced lymphoma with investigational drugs: mito-guazone, gallium nitrate and etoposide. Cancer Treat. Rep., 71, 47–51.Google Scholar
  115. Warrell, R. P., Israel, R., Frisone, M. et al. (1988) Gallium nitrate for acute treatment of cancer-related hypercalcemia: randomized, double-blind comparison to calcitonin. Ann. Intern. Med., 108, 669–674.PubMedGoogle Scholar
  116. Webb, D. R., Wilson, S. E. and Carter, D. E. (1986) Comparative pulmonary toxicity of gallium arsenide, gallium (III) oxide, or arsenic (III) oxide intratracheally instilled into rats. Toxicol Appl. Pharmacol, 82, 405–416.PubMedCrossRefGoogle Scholar
  117. Webb, D. R., Wilson, S. E. and Carter, D. E. (1987) Pulmonary clearance and toxicity of respirable gallium arsenide particulates intratracheally instilled into rats. Am. Ind. Hyg. Assoc. J., 48, 660–667.PubMedCrossRefGoogle Scholar
  118. Weiner, R. E. (1983) In vitro transfer of Ga-67 from transferrin to ferritin. J. Nucl. Med., 24, 608–614.PubMedGoogle Scholar
  119. Weiner, R. E. (1989) Role of phosphate-containing compounds in the transfer of indium-III and gallium-67 from transferrin to ferritin. J. Nucl. Med., 30, 70–79.PubMedGoogle Scholar
  120. Wilson, R. W. and Bloomfield, V. A. (1979) Counterion-induced condensation of deoxyribonucleic acid: Biochemistry, 18, 2192–2196.PubMedCrossRefGoogle Scholar
  121. Yang, D. P. and Morton, H. J. (1971) Effect of calcium and magnesium on the morphology and growth pattern of L.M cells. J. Natl Cancer Inst., 46, 505–516.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Philippe Collery

There are no affiliations available

Personalised recommendations