Skip to main content
  • 465 Accesses

Abstract

The linear theory of elasticity, based on the assumption of finite strain, assumes that materials obey Hooke’s generalized linear stress-strain relations. In general the elastic moduli relating the components of stress and strain only depend on the orientation of the coordinate system. Some materials exhibit elastic behaviour that differs under tension and compression. The stress-strain behaviour of these materials is not linear and hence a bilinear model is usually adopted as an approximate means of representing the moduli (Fig. 7.1). These materials are thus called bimodulus, bimodular, bilinear or different-modulus materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A y , B y , D y , E y , F y , G y , H y :

the laminate stiffnesses

a, b :

dimensions of the plate in x, y directions

C ijk , C ykl :

stiffness coefficients of stress-strain relations for isotropic and cross-ply plates

σ m :

in-plane bending stress

σ n :

in-plane normal stress

h :

plate thickness

z n :

neutral surface location for isotropic plate and Z n =z n/h

z nx , z ny :

neutral surface location for cross-ply plate and Z nx= Z nx/ h, Z ny= Z ny/ h

K :

non-dimensional buckling coefficient, Nxx b 2/ (π 2 D 22)

N y , M y , M y * , P y , P y * , R y , R y * :

initial stress resultants

Pl, ΔPl:

the applied surface traction and perturbing surface traction

S :

ratio of bending stress to normal stress, σ m / σ n

u l :

displacements of plate in x, y, z directions

u x , u y , w :

displacements of plate (z = 0) in x, y, z directions

φx, φy,φz:

rotations of plate in x, y, z directions

ξx, ξy, ξz,∅x,∅y:

higher-order shear deformation terms

E t , E c :

respective tensile and compressive Young’s moduli for isotropic plate

E t l , E c l :

respective tensile and compressive Young’s moduli in directions x, y, z and i = 1, 2, 3

G t , G c :

respective tensile and compressive shear moduli for isotropic plate

G ij t , G y c :

respective tensile and compressive shear moduli for orthotropic plate and i, j = 1, 2, 3

v t , v c :

respective tensile and compressive Poisson’s ratios for isotropic plate

v t y , v c y :

respective tensile and compressive Poisson’s ratios for orthotropic plate and i, j = 1, 2, 3

References

  1. Timoshenko, S. P. (1941) Strength of Materials. Part 2: Advanced Theory and Problems. 2nd edn; Van Nostrand, Princeton, NJ.

    Google Scholar 

  2. Ambartsumyan, S. A. and Khachatryan, A. A. (1966) Basic equations in the theory of elasticity of materials with different stiffness in tension and compression. Mechanics of Solids, 1(2), 29–34.

    Google Scholar 

  3. Shapiro G. S. (1966) Deformation of bodies with different tensile and compressive strengths. Mechanics of Solids, 1(2), 85–6.

    Google Scholar 

  4. Kamiya, N. (1975) A circular cylindrical shell with different elastic moduli in tension and compression. Bulletin of the Japanese Society of Mechanical Engineers, 18(124), 1075–81.

    Article  Google Scholar 

  5. Kamiya, N. (1975) Large deflection of a different modulus circular plate. Trans. ASME, Journal of Engineering Materials and Technology, 97H(1), 52–6.

    Article  Google Scholar 

  6. Kamiya, N. (1975) An energy method applied to large elastic deflection of a thin plate of bimodulus material. Journal of Structural Mechanics, 97H(3), 317–29.

    Google Scholar 

  7. Kamiya, N. (1975) Transverse shear effect in a bimodulus plate. Nuclear Engineering and Design, 32, 351–7.

    Article  Google Scholar 

  8. Bert, C. W. (1977) Model for fibrous composites with different properties in tension and compression. Trans. ASME, Journal of Engineering Materials and Technology, 99H(4), 344–9.

    Article  Google Scholar 

  9. Bert, C. W. (1979) Classical Analysis of Laminated Bimodulus Composite Material Plates. University of Oklahoma, School of Aerospace, Mechanical and Nuclear Engineering, Contract No. 0014-7b-0647, Report OUAMNE-79-10A.

    Google Scholar 

  10. Bert C. W., Reddy J. N., Chao, W. C. and Reddy, V. S. (1981) Vibration of thick rectangular plates of bimodulus composite materials. Journal of Applied Mechanics, 48(2), 371–6.

    Article  Google Scholar 

  11. Bert, C. W. and Kumar M. (1982) Vibration of cylindrical shells of bimodulus composite materials. Journal of Sound and Vibration, 81, 107–21.

    Article  Google Scholar 

  12. Reddy, J. N. and Chao, W. C. (1980) Finite element analysis of laminated bimodulus plates. Computers and Structures, 12(2), 245–51.

    Article  Google Scholar 

  13. Bert, C. W., Reddy, J. N., Reddy, V. S. and Chao, W. C. (1981) Bending of thick rectangular plates laminated of bimodulus composite materials. AIAA Journal, 19(10), 1342–9.

    Article  Google Scholar 

  14. Jones, R.M. (1971) Buckling of cylindrical shells with different moduli in tension and compression. AIAA Journal, 9(1), 53–61.

    Article  Google Scholar 

  15. Jones, R.M. (1971) Buckling of stiffened multilayered circular cylindrical shells with different orthotropic moduli in tension and compression. AIAA Journal, 9(5), 917–23.

    Article  Google Scholar 

  16. Bert, C. W. and Reddy, J. N. (1981) Vibration and buckling of thick cylindrical shells of bimodulus composite materials. Advances in Aerospace Structures and Materials, 109–14.

    Google Scholar 

  17. Reissner, E. (1944) On the theory of bending of elastic plates. Journal of Mathematical Physics, 23,184–91.

    Google Scholar 

  18. Reissner, E. (1945) The effects of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics, 12, 69–77.

    Google Scholar 

  19. Mindlin, R. D. (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics, 18, 31–8.

    Google Scholar 

  20. Nelson, R. B. and Lorch, D. R. (1974) A refined theory for laminated orthotropic plates. Journal of Applied Mechanics, 41, 177–83.

    Article  Google Scholar 

  21. Reddy, J. N. (1984) A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, 51, 745–52.

    Article  Google Scholar 

  22. Lo, K. H., Christensen, R. M. and Wu, E. M. (1977) A higher-order theory of plate deformation. Part I. homogeneous plates. Journal of Applied Mechanics, 44, 633–68.

    Google Scholar 

  23. Lo, K. H., Christensen, R. M. and Wu, E. M. (1977) A higher-order theory of plate deformation. Part II: laminated plates. Journal of Applied Mechanics, 44, 669–76.

    Article  Google Scholar 

  24. Bert, C. W. (1984) A critical evaluation of new plate theories applied to laminated composites. Composite Structures, 2, 329–47.

    Article  Google Scholar 

  25. Brunelle, E. J. and Robertson S. R. (1974) Initially stressed Mindlin plates. AIAA Journal, 12(8), 1036–45.

    Article  Google Scholar 

  26. Doong, J. L. and Chen, L. W. (1985) Vibration of a bimodulus thick plate. Journal of Vibration, Acoustics, Stress and Reliability in Design, 107, 92–7.

    Article  Google Scholar 

  27. Chen, L. W. and Doong, J. L. (1983) Buckling of a bimodulus composite thick plate. Proc. ASME, Failure Prevention and Reliability Conference, pp. 11–14.

    Google Scholar 

  28. Fung, C. P. and Doong, J. L. (1988) Bending of a bimodulus laminated plate based on a higher-order shear deformation theory. Composite Structures, 10, 121–44.

    Article  Google Scholar 

  29. Doong, J. L. and Fung, C. P. (1988) Vibration and buckling of bimodulus laminated plates according to a higher-order plate theory. Journal of Sound and Vibration, 125(2), 325–39.

    Article  Google Scholar 

  30. Doong, J. L., Lee, C. and Fung, C. P. (1991) Vibration and stability of laminated plates based on a modified plate theory. Journal of Sound and Vibration, 151(2), 193–201.

    Article  Google Scholar 

  31. Chen, L. W. and Doong, J. L. (1983) Post-buckling behavior of a thick plate. AIAA Journal, 21(8), 1157–61.

    Article  Google Scholar 

  32. Doong, J. L. and Chen, L. W. (1985) Post-buckling behavior of a bimodulus thick plate. Journal of the Chinese Society of Mechanical Engineers, 6(2), 137–44.

    Google Scholar 

  33. Doong, J. L. (1987) Vibration and stability of an initially stressed thick plate according to a higher-order deformation theory. Journal of Sound and Vibration, 113(3), 425–40.

    Article  Google Scholar 

  34. Doong, J. L., Fung C. P. and Chen, C. S. (1987) Buckling of a bimodulus thick rectangular plate based on higher-order plate theory. Journal of the Chinese Society of Mechanical Engineers, 8(4), 221–9.

    Google Scholar 

  35. Doong, J. L., Lee, C. and Fung, C. P. (1988) Vibration and buckling of a bimodulus composite plate based on a new plate theory. Journal of the Chinese Society of Mechanical Engineers, 9(4), 271–81.

    Google Scholar 

  36. Lee, C. Static and dynamic analysis of a bimodulus composite plate based on a new plate theory. MS Thesis, Department of Mechanical Engineering, National Central University, Chung-li, Taiwan, ROC.

    Google Scholar 

  37. Lee, C. T. The finite strip analysis of bimodulus laminated plate. MS Thesis, Department of Civil Engineering, Tamkang University, Taiwan, ROC.

    Google Scholar 

  38. Jones, R. M. (1973) Buckling and vibration of unsymmetrically laminated cross-ply rectangular plates. AIAA Journal, 11(12), 1626–32.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doong, J.L., Chen, L.W. (1995). Buckling of bimodular composite plates. In: Turvey, G.J., Marshall, I.H. (eds) Buckling and Postbuckling of Composite Plates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1228-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1228-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4537-7

  • Online ISBN: 978-94-011-1228-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics