Skip to main content

Lay-up optimization of laminated plates under buckling loads

  • Chapter

Abstract

Optimization is a central concept in the design of composite structures because of the adaptability of composite materials to a given design situation. Design parameters such as layer thicknesses and ply angles can be employed to great effect to achieve an optimized structure with improved weight and stiffness characteristics. This chapter deals with the lay-up optimization of laminated plates subject to buckling loads. A survey of the subject is presented and the optimal configurations of rectangular laminates are discussed. Designs are studied with respect to layer thicknesses and ply angles for symmetrical and antisymmetrical laminates of hybrid and non-hybrid construction. The effect of bending-twisting coupling on optimal designs is discussed and the optimal configurations with and without this effect are compared. Several factors affecting optimal designs are highlighted. These factors include the use of discrete ply angles and layer thicknesses, restrained edges, shear deformation, cut-outs, thermal loading, strength and stiffness constraints, multiple design objectives and shape design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitney, J. M. (1987) Structural Analysis of Laminated Anisotropic Plates. Technomic, Lancaster, PA.

    Google Scholar 

  2. Chen, T. L. C. and Bert, C. W. (1976) Design of composite material plates for maximum uniaxial compressive buckling load. Proceedings of the Oklahoma Academy of Science, 56, 104–07.

    Google Scholar 

  3. Bert, C. W. and Chen, T. L. C. (1976) Optimal design of composite material plates to resist buckling under biaxial compression. Trans. Japanese Society for Composite Materials, 2, 7–10.

    Google Scholar 

  4. Adali, S. and Duffy, K. J. (1993) Optimal hybridization of symmetric, cross-ply laminates under biaxial buckling. ASCE Journal of Aerospace Engineering, 6, 394–406.

    Article  Google Scholar 

  5. Song, J. and Pence, T. J. (1992) On the design of three-ply nonlinearly elastic composite plates with optimal resistance to buckling. Structural Optimization, 5, 45–54.

    Article  Google Scholar 

  6. Jones, R. M. (1975) Mechanics of Composite Materials, McGraw-Hill, New York.

    Google Scholar 

  7. Hayashi, T. (1974) Optimum design of cross and angle-plied laminated composite plates under compression. Fukugo Zairyo Kenkyu (Composite Material Structures), 3, 18–20 (in Japanese).

    Google Scholar 

  8. Wang, J. T. S. (1982) Best angles against buckling for rectangular laminates, in Progress in Science and Engineering of Composites, Proceedings of the Fourth International Conference on Composite Materials (ICCM-IV), (eds T. Hayashi, K. Kawata and S. Umekawa) Tokyo, pp. 575–82.

    Google Scholar 

  9. Tsai, S. W. and Hahn, H. T. (1980) Introduction to Composite Materials. Technomic Westport, CT.

    Google Scholar 

  10. Schmit, Jr., L. A. and Farshi, B. (1977) Optimum design of laminated fibre composite plates. International Journal for Numerical Methods in Engineering, 11, 623–40.

    Article  Google Scholar 

  11. Haftka, R. T. and Gürdal, Z. (1992) Elements of Structural Optimization, 3rd edn. Kluwer, Dordrecht.

    Book  Google Scholar 

  12. Hirano, Y. (1979) Optimum design of laminated plates under axial compression. AIAA Journal, 17, 1017–19.

    Article  Google Scholar 

  13. Hirano, Y. (1983) Optimization of laminated composite plates and shells. In Mechanics of Composite Materials: Recent Advances, Proceedings of the IUTAM Symposium on Mechanics of Composite Materials, 16–19 August 1982, Blacksburg, Virginia, edited by Z. Hashin and C. T. Herakovich, Pergamon Press, New York, pp. 355–65.

    Google Scholar 

  14. Joshi, S. P. and Iyengar, N. G. R. (1982) Studies on optimization of laminated composite plates. Proceedings of the 13th Congress of the International Council of the Aeronautical Sciences/AIAA Aircraft Systems and Technology Conference. 22–27 August, Seattle, Washington, pp. 607–14.

    Google Scholar 

  15. Joshi, S. P. and Iyengar, N. G. R. (1985) Optimal design of laminated composite plates under axial compression. Trans. Canadian Society of Mechanical Engineers, 9, 45–50.

    Google Scholar 

  16. Nakagiri, S. and Takabatake, H. (1986) Buckling strength optimization of FRP laminated plates by use of the Hessian matrix. In Computational Mechanics ′86, Theory and Applications. Proceedings of International Conference on Computational Mechanics, edited by G. Yagawa and S. N. Atluri, May 25–29, Tokyo, Volume 2, pp. X71–X76.

    Google Scholar 

  17. Muc, A. (1988) Optimal fibre orientation for simply-supported, angle-ply plates under biaxial compression. Composite Structures, 9, 161–72.

    Article  Google Scholar 

  18. Hirano, Y. (1979) Optimum design of laminated plates under shear. Journal of Composite Materials, 13, 329–34.

    Article  CAS  Google Scholar 

  19. Hirano, Y. (1980) Stability Optimization of Laminated Composite Plates. Institute of Space and Aeronautical Science, University of Tokyo, Report No. 579, June 1980.

    Google Scholar 

  20. Housner, J. M. and Stein, M. (1975) Numerical Analysis and Parametric Studies of the Buckling of Composite Orthotopic Compression and Shear Panels. NASA TN D-7996, 103 pp.

    Google Scholar 

  21. Grenestedt, J. L. (1991) Layup optimization against buckling of shear panels. Structural Optimization, 3, 115–20.

    Article  Google Scholar 

  22. Chao, C. C., Koh, S. L. and Sun, C. T. (1975) Optimization of buckling and yield strengths of laminated composites. AIAA Journal, 13, 1131–32.

    Article  Google Scholar 

  23. Crouzet-Pascal, J. (1978) Buckling analysis of laminated composite plates. Fibre Science and Technology. 11, 413–46.

    Article  Google Scholar 

  24. Tang, J. (1984) On optimum design of laminated plates and the effect of coupling between bending and extension. Computational Structural Mechanics and Applications, 1, 75–84 (in Chinese).

    Google Scholar 

  25. Tang, J. (1987) On optimum design of laminated plates under bidirectional axial compression. Acta Mechanica Sinica, 19, 268–72 (in Chinese).

    Google Scholar 

  26. Tang, J. (1989) On optimum analysis of laminated plates under shear. Acta Material Composite Sinica, 6, 48–55 (in Chinese).

    Google Scholar 

  27. Pedersen, P. (1987) On sensitivity analysis and optimal design of specially orthotropic laminates. Engineering Optimization, 11, (1987) 305–16.

    Article  Google Scholar 

  28. Pedersen, P. (1987) On sensitivity analysis and optimal design for laminates. In Mechanical Behaviour of Composites and Laminates, edited by W. A. Green and M. Micunovic. Elsevier Applied Science, London, pp. 274–83.

    Google Scholar 

  29. Grenestedt, J. L. (1990) Composite plate optimization only requires one parameter. Structural Optimization, 2, 29–37.

    Article  Google Scholar 

  30. Grenestedt, J. L. and Gudmundson, P. (1992) Lay-up optimization of composi te material structures. In Lay-up Optimization of Composite Structures, Report No. 92-24, Royal Institute of Technology, Stockholm, Sweden, pp. C1–C32. Paper presented in IUTAM Symposium on Optimal Design with Advanced Materials, 18–20 August, Lyngby, Denmark, 16 pp.

    Google Scholar 

  31. Cheng, G. and Tang, J. (1992) Optimum design of laminated plates with respect to eigenvalues. Paper presented in IUTAM Symposium on Optimal Design with Advanced Materials, 18–20 August, Lyngby, Denmark, 12 pp.

    Google Scholar 

  32. Miki, M. (1986) Optimum design of fibrous laminated composite plates subject to axial compression. In Composites 86: Recent Advances in Japan and the United States, edited by K. Kawata, S. Umekawa and A. Kobayashi, Tokyo, pp. 673–80.

    Google Scholar 

  33. Miki, M. and Sugiyama, Y. (1991) Optimum design of laminated composite plates using lamination parameters. Proceedings of AIAA 32nd Structures, Structural Dynamics and Materials Conference, 8–10 April 1991, Baltimore, Maryland, pp. 275–83.

    Google Scholar 

  34. Miki, M., Sugiyama, Y. and Sakurai, K. (1991) Optimum design of fibrous laminated composite plates subject to biaxial compression. Journal of the Society of Materials Science, (Japan) 40, 308–14 (in Japanese).

    Article  Google Scholar 

  35. Fukunaga, H. and Hirano, Y. (1982) Stability optimization of laminated composite plates under in-plane loads. In Progress in Science and Engineering of Composites (ICCM-IV), edited by T. Hayashi, K. Kawata and S. Umekawa, Tokyo, pp. 565–72.

    Google Scholar 

  36. Miki, M. and Tonomura, K. (1987) Optimum design of hybrid laminated plates subject to axial compression in the case of aspect ratio being less than unity. Journal of the Society of Materials Science, (Japan) 36, 209–15 (in Japanese).

    Article  Google Scholar 

  37. Miki, M. and Tonomura, K. (1987) Optimum design of hybrid fibrous laminated composite plates subject to axial compression. In Composite Structures 4, Vol.1., edited by I. H. Marshall. Elsevier Applied Science, London, pp. 1.368–1.377.

    Google Scholar 

  38. Miki, M., Fujimari, K. and Miyano, Y. (1985) Optimum design of fibrous laminated sandwich plates subjected to axial compression in the case of aspect ratio being less than unity. Journal of the Society of Materials Science (Japan) 34, 267–72 (in Japanese).

    Article  Google Scholar 

  39. Miki, M. and Fujii, T. (1986) Optimum design of fibrous laminated sandwich plates subjected to axial compression in the case of aspect ratio being greater than unity. Journal of the Society of Materials Science (Japan) 35, 503–7 (in Japanese).

    Article  Google Scholar 

  40. Haftka, R. T. and Walsh, J. L. (1992) Stacking-sequence optimization for buckling of laminated plates by integer programming. AIAA Journal, 30, 814–19.

    Article  Google Scholar 

  41. Gürdal, Z. and Haftka, R. T. (1991) Optimization of composite laminate. Presented at the NATO Advanced Study Institute on Optimization of Large Structural Systems, 23 Sept.–4 October, 1991. Berchtesgaden, Germany, 26 pp.

    Google Scholar 

  42. Nagendra, S., Haftka, R. T. and Gürdal, Z., (1992) Stacking-sequence optimization of simply supported laminates with stability and strain constraints. AIAA Journal, 30, 2132–37.

    Article  Google Scholar 

  43. Shin, Y. S., Haftka, R. T., Watson, L. T. and Plaut, R. H. (1989) Design of laminated plates for maximum buckling load. Journal of Composite Materials, 23, 348–69.

    Article  Google Scholar 

  44. Adali, S., Verijenko, V. E., Richter, A. and Summers, E. B., Optimization of hybrid laminates with discrete ply angles for maximum buckling load. In preparation.

    Google Scholar 

  45. Noor, A. K., Mathers, M. D. and Anderson, M. S. (1977) Exploiting symmetries for efficient postbuckling analysis of composite plates. AIAA Journal, 15, 24–32.

    Article  Google Scholar 

  46. Nemeth, M. P. (1986) Importance of anisotropy on buckling of compression-loaded symmetric composite plates. AIAA Journal, 24, 1831–35.

    Article  Google Scholar 

  47. Whitney, J. M. (1987) The effect of shear deformation on the bending and buckling of anisotropic laminated plates. In Composite Structures 4, edited by I. H. Marshall. Elsevier Applied Science, London, pp. 1.109–1.121.

    Google Scholar 

  48. Grenestedt, J. L. (1989) A study of the effect of bending-twisting coupling on buckling strength. Composite Structures, 12, 271–90.

    Article  Google Scholar 

  49. Nemeth, M. P. (1992) Buckling of symmetrically laminated plates with compression, shear and in-plane bending. AIAA Journal, 30, 2959–65.

    Article  Google Scholar 

  50. Rohwer, K. (1988) Bending-twisting coupling effects on the buckling load of symmetrically stacked plates. In Composite Materials and Structures, Proceedings of the Int. Conf on Composite Materials and Structures, 6–9 January, 1988, Madras, India, edited by K. A. V. Pandalai and S. K. Malhotra, Tata McGraw-Hill Publishing Company Ltd., New Delhi, pp. 313–23.

    Google Scholar 

  51. Sherbourne, A. N. and Pandey, M. D. (1991) Differential quadrature method in the buckling analysis of beams and composite plates. Computers and Structures, 40, 903–13.

    Article  Google Scholar 

  52. Biggers, S. B. and Srinivasan, S. (1993) Compression buckling response of tailored rectangular composite plates. AIAA Journal, 31, 590–96.

    Article  Google Scholar 

  53. Leissa, A. W. (1987) An overview of composite plate buckling. In Composite Structures 4, edited by I. H. Marshall. Elsevier Applied Science, London, pp. 1.1–1.29.

    Google Scholar 

  54. Leissa, A. W. (1987) A review of laminated composite plate buckling. Applied Mechanics Reviews, 40 (5) 575–95.

    Article  Google Scholar 

  55. Kassimali, A., Craddock, N. J. and Matinrad, M. (1986) Stability of fibre composite plates with various support conditions. In Proceedings of International Symposium on Composite Materials and Structures, edited by T. T. Loo and C. T. Sun, Technomic Publishing Company, Inc., Lancaster, Pennsylvania, pp. 267–73.

    Google Scholar 

  56. Sawyer, J. W. (1977) Flutter and buckling of general laminated plates. Journal of Aircraft, 14, 387–93.

    Article  Google Scholar 

  57. Qian, B., Reiss, B. and Aung, W. (1989) Optimum single modal and bimodal buckling design of symmetric laminates. In Recent Developments in Buckling of Structures, edited by D. Hui, V. Birman and D. Bushnell, ASME, New York, pp. 25–29.

    Google Scholar 

  58. Walker, M., Adali, S. and Verijenko, V. E., Optimisation of symmetric laminates for maximum buckling load including the effect of bending-twisting coupling. Computers and Structures (submitted).

    Google Scholar 

  59. Obraztsov, I. F. and Vasil’ev, V. V. (1989) Optimal design of composite structures. In Handbook of Composites, Vol. 2–Structures and Design, edited by C. T. Herakovich and Y. M. Tarnopolskii, North-Holland, Amsterdam, pp. 3–84.

    Google Scholar 

  60. Sherbourne, A. N. and Pandey, M. D. (1992) Effects of in-plane restraints on the stability of laminated composite plates. Composite Structures, 20, 73–81.

    Article  Google Scholar 

  61. Pandey, M. D. and Sherbourne, A. N. (1991) Buckling of anisotropic composite plates under stress gradient. ASCE Journal of Engineering Mechanics, 117 260–75.

    Article  Google Scholar 

  62. Duffy, K. J. and Adali, S. (1990) Design of antisymmetric hybrid laminates for maximum buckling load: II. Optimal layer thickness. Composite Structures, 14, 113–24.

    Article  Google Scholar 

  63. Adali, S. and Duffy, K. J. (1990) Design of antisymmetric hybrid laminates for maximum buckling load: I. Optimal fibre orientation. Composite Structures, 14, 49–60.

    Article  Google Scholar 

  64. Chai, G. B., Ooi, K. T. and Khong, P. W. (1993) Buckling strength optimization of laminated composite plates. Composite Structures, 46, 77–82.

    Article  Google Scholar 

  65. Chai, G. B. and Khong, P. W. (1993) The effect of varying the support conditions on the buckling of laminated composite plates. Composite Structures, 24, 99–106.

    Article  Google Scholar 

  66. Iyengar, N. G. R. and Joshi, S. P. (1986) Optimal design of antisymmetric laminated composite plates. Journal of Aircraft, 23, 359–60.

    Article  Google Scholar 

  67. Adali, S. (1983) Multiobjective design of an antisymmetric angle-ply laminate by nonlinear programming. ASME Journal of Mechanisms, Transmission, and Automation in Design, 105, 214–19.

    Article  Google Scholar 

  68. Kumar, A. and Kishore, B. N. R. (1991) Buckling of antisymmetric angle- and cross-ply rectangular plates under shear and compression. International Journal of Mechanical Sciences, 33, 31–39.

    Article  Google Scholar 

  69. Adali, S. (1984) Design of shear-deformable antisymmetric angle-ply laminates to maximize the fundamental frequency and frequency separation. Composite Structures, 2, 349–69.

    Article  Google Scholar 

  70. Kam, T. Y. and Chang, R. R. (1992) Buckling of shear deformable laminated composite plates. Composite Structures, 22, 223–34.

    Article  Google Scholar 

  71. Khdeir, A. A. (1989) Stability of antisymmetric angle-ply laminated plates. ASCE Journal of Engineering Mechanics, 115, 952–62.

    Article  Google Scholar 

  72. Lukoshevichyus, R. S. (1976) Minimizing the mass of reinforced rectangular plates compressed in two directions in a manner conducive toward stability. Polymer Mechanics, 12, 929–33.

    Article  Google Scholar 

  73. Lin, C. C. and Yu, A. J. (1991) Optimum weight design of composite laminated plates. Computers and Structures, 38, 581–87.

    Article  Google Scholar 

  74. Srivatsa, K. S. and Krishna Murty, A. V. (1992) Stability of laminated composite plates with cut-outs. Computers and Structures, 43, 273–79.

    Article  Google Scholar 

  75. Nemeth, M. P. (1988) Buckling behaviour of compression-loaded symmetrically laminated angle-ply plates with holes. AIAA Journal, 26, 330–36.

    Article  CAS  Google Scholar 

  76. Hyer, M. W. and Lee, H. H. (1991) The use of curvilinear fibre format to improve buckling resistance of composite plates with central circular holes. Composite Structures, 18, 239–61.

    Article  Google Scholar 

  77. Nagendra, S., Haftka, R. T. and Gürdal, Z. (1991) Design of a blade-stiffened composite panel with a hole. Composite Structures, 18, 195–219.

    Article  Google Scholar 

  78. Tauchert, T. R. and Huang, N. N. (1987) Thermal buckling of symmetric angle-ply laminated plates. In Composite Structures 4, edited by I. H. Marshall. Elsevier Applied Science, London, pp. 1.424–1.435.

    Google Scholar 

  79. Adali, S. and Duffy, K. J. (1990) Optimal design of antisymmetric hybrid laminates against thermal buckling. Journal of Thermal Stresses, 13, 57–71.

    Article  Google Scholar 

  80. Adali, S. and Duffy, K. J. (1990) Multicriteria thermoelastic design of antisymmetric angle-ply laminates. In Multicriteria Design Optimization, edited by H. Eschenauer, J. Koski and A. Osyczka, Springer-Verlag, Berlin, pp. 417–28.

    Google Scholar 

  81. Rothwell, A. (1969) Optimum fibre orientations for the buckling of thin plates of composite material. Fibre Science and Technology, 2, 111–22.

    Article  Google Scholar 

  82. Starnes, J. H., Jr. and Haftka, R. T. (1979) Preliminary design of composite wings for buckling, strength, and displacement constraints. Journal of Aircraft, 16, 564–70.

    Article  Google Scholar 

  83. Liu, I.-W. and Lin, C.-C. (1991) Optimum design of composite wing structures by a refined optimality criterion. Composite Structures, 17, 51–65.

    Article  Google Scholar 

  84. Schmit, L. A. and Mehrinfar, M. (1982) Multilevel optimum design of structures with fibre composite stiffened-panel components. AIAA Journal, 20, 138–47.

    Article  Google Scholar 

  85. Stroud, W.J. and Agranoff, N. (1976) Minimum Mass Design of Filamentary Composite Panels under Combined Loads: Design Procedure Based on Simplified Buckling Equations. NASA TN D-8257, 49 pp.

    Google Scholar 

  86. Stroud, W. J., Agranoff, N. and Anderson, M. S. (1977) Minimum Mass Design of Filamentary Composite Panels wider Combined Loads: Design Procedure Based on Rigorous Buckling Analysis. NASA TN D-8417.

    Google Scholar 

  87. Stroud, W. J. (1983) Optimization of composite structures. In Mechanics of Composite Materials: Recent Advances, Proceedings of the IUTAM Symposium on Mechanics of Composite Materials, 16–19 August 1982, Blacksburg, Virginia, edited by Z. Hashin and C. T. Herakovich. Pergamon Press, pp. 307–21. (Also NASA TM 84544, 1982).

    Google Scholar 

  88. Maksimovic, S. (1985) Optimum design of composite structures. In Composite Structures 3, edited by I. H. Marshall. Elsevier Applied Science, London, pp. 148–58.

    Chapter  Google Scholar 

  89. Wu, C. M. L. and Webber, J. P. H. (1991) Minimum weight optimization of composite laminated struts. Engineering Optimization, 17, 21–63.

    Article  Google Scholar 

  90. Butler, R. and Williams, F. W. (1992) Optimum design using VICONOPT, a buckling and strength constraint program for prismatic assemblies of anisotropic plates. Computers and Structures, 43, 699–708.

    Article  Google Scholar 

  91. Bert, C. W. (1977) Optimal design of composite material panels for business aircraft. Paper presented at Business Aircraft Meeting, Wichita, Pennsylvania, 29 March–1 April 1977, Society of Automotive Engineers, 10 pp.

    Book  Google Scholar 

  92. Watkins, R. I. and Morris, A. J. (1987) A multicriteria objective function optimization scheme for laminated composites for use in multilevel structural optimization schemes. Computer Methods in Applied Mechanics and Engineering, 60, 233–51.

    Article  Google Scholar 

  93. Kumar, N. and Tauchert, T. R. (1992) Multiobjective design of symmetrically laminated plates. ASME Journal of Mechanical Design, 114, 620–25.

    Article  Google Scholar 

  94. Sloss, J. M., Sadek, I. S., Bruch, J. C., Jr. and Adali, S. (1992) Design/control optimization of cross-ply laminates under buckling and vibration. ASCE Journal of Aerospace Engineering, 5, 127–37.

    Article  Google Scholar 

  95. Sadek, I. S., Sloss, J M., Adali, S. and Bruch, J. C., Jr. (1993) Integrated design and control of laminated hybrid plates with dynamic response and buckling objectives. Journal of Sound and Vibration, 163, 571–76.

    Article  Google Scholar 

  96. Brandt, A. M., Dzieniszewski, W., Jendo, S., Marks, W., Owczarek, S. and Wasiutyński, Z. (1986) Criteria and Methods of Structural Optimization. Martinus Nijhoff Publishers, Dordrecht, The Netherlands.

    Book  Google Scholar 

  97. Levy, R. and Ganz, A. (1991) Analysis of optimized plates for buckling. Computers and Structures, 41 1379–85.

    Article  Google Scholar 

  98. Frauenthal, J. C. (1973) Initial postbuckling behaviour of optimally designed columns and plates. International Journal of Solids and Structures, 9, 115–27.

    Article  Google Scholar 

  99. Pandey, M. D. and Sherbourne, A. N. (1993) Postbuckling behaviour of optimized rectangular composite laminates. Composite Structures, 23, 27–38.

    Article  Google Scholar 

  100. Adali, S., Walker, M. and Verijenko, V. E. (1994) Optimal laminate Configurations with symmetric lay-ups for maximum postbuckling stiffness. Composites Engineering (to appear).

    Google Scholar 

  101. Shin, D. K., Gürdal, Z. and Griffin, O. H. Jr. (1991) Minimum weight design of laminated composite plates for postbuckling performance. Applied Mechanics Reviews, 44 (11, Part 2) S219–S231.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adali, S. (1995). Lay-up optimization of laminated plates under buckling loads. In: Turvey, G.J., Marshall, I.H. (eds) Buckling and Postbuckling of Composite Plates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1228-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1228-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4537-7

  • Online ISBN: 978-94-011-1228-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics