Skip to main content

Fluids in geological processes

  • Chapter

Abstract

The role of fluids in the Earth’s crust and mantle has been a subject of debate by penologists, geochemists and geophysicists for much of the present century, and an extensive literature exists in both English and Russian.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alekhin, Yu.V., Lakshtanov, L.Z., and Zharikov, V.A. (1983). Transport phenomena in pore solution under hydrothermal conditions. 4th Int. Symp. on Water-Rock Interaction, Extend. Abstracts, Misasa, Japan, pp. 5–8.

    Google Scholar 

  • Aranovich, L.Ya., Shmulovich, K.I., and Fed’kin, V.V. (1987). Distinctive features of the regime of H2O and CO2 in regional metamorphism, in Contributions to Physico-chemical Petrology, XIV (eds V.A. Zharikov and V.V. Fed’kin), pp. 96–118 (in Russian).

    Google Scholar 

  • Balashov, V.N. (1992). Diffusion mass transport in hydrothermal systems. Doctoral dissertation, Institute of Experimental Mineralogy, Chernogolovka (in Russian).

    Google Scholar 

  • Balashov, V.N., Zaraisky, G.P., Tikhomirova, V.l., and Postnova, L.E. (1983). Diffusion of rock-forming components in pore solutions at 200°C and 100 MPa. Geochem. Int., 20 (1), 28–39.

    Google Scholar 

  • Belonozhko, A.B. (1990). Calculation of the properties of supercritical fluid in fine pores. Ph.D. thesis, Institute for Chemical Physics, Moscow (in Russian).

    Google Scholar 

  • Belonozhko, A.B. and Shmulovich, K.I. (1987a). A molecular-dynamics study of a dense fluid in micropores. Geochem. Int., 24 (6), 1–12.

    Google Scholar 

  • Belonozhko, A.V. and Shmulovich, K.I. (1987b). Fluid phase in a fine-pore medium at high pressures. Doklady Akademii Nauk SSSR, 295 (3), 625–9.

    Google Scholar 

  • Berry, F.A.F. (1969). Relative factors influence on membrane filtration effect in geological environments. Chemical Geology, 4, 295–301.

    Article  Google Scholar 

  • Bodnar, R.J. and Sterner, S.M. (1985). Fluid inclusions in natural quartz. II: Application to P–T–V studies. Geochim. Cosmochim. Acta, 49 (9), 1855–9.

    Article  Google Scholar 

  • Boettcher, A.L. (1984). The system SiO2−H2O−CO2 melting solubility mechanism of carbon and liquid structure to high pressures. Am. Mineral., 69, 823–33.

    Google Scholar 

  • Bowers, T.S. and Helgeson, H.C. (1983). Calculation of the thermodynamic and geochemical consequences of non-ideal mixing in the system H2O−CO2−NaCl on phase relations in geologic systems: Equation of state for H2O−CO2−NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta, 47, 1247–75.

    Article  Google Scholar 

  • Carmichael, L. and Eugster, H. (eds) (1987). Thermodynamic Modelling of Geological Materials: Minerals, Fluids and Melts. Reviews in Mineralogy, 17.

    Google Scholar 

  • Chukhrov, F.V. (1974) (ed.) Minerals. Diagrams of phase equilibrium, part 1, Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Crawford, M.L., Kraus, D.W., and Hollister, L.S. (1979). Petrologic and fluid inclusion study of calc-silicate rocks, Prince Rupert, British Columbia, Am. J. Sci., 279, 1135–59.

    Article  Google Scholar 

  • Epel’baum, M.B.(1980). Silicate Melts Involving Volatile Components, Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Franck, E.U.(1985). Aqueous mixtures to supercritical temperatures and at high pressures. Pure Appl. Chem., 57 (8), 1065–70.

    Article  Google Scholar 

  • Fyfe, W.S., Price, N.L., and Thompson, A.B. (1978). Fluids in the Earth’s Crust. Developments in Geochemistry, 1, Elsevier, Amsterdam.

    Google Scholar 

  • Fyfe, W.S., Turner, F., and Verhoogen, J. (1958). Metamorphic Reactions and Metamorphic Facies. Geol. Soc. Am. Mem., 73.

    Google Scholar 

  • Gehrig, M. (1980). Phasengleichegmichte und P–V–T Daten ternarer Mixhungen aus Wassen Kohlendioxide und Natrium-Chlorid bis 3 kbar und 550°C. Doktor Dissertation Univer. Karlsruhe Fveiburg. Verlag.

    Google Scholar 

  • Grant, G.A. (1985). Phase equilibria in partial melting of pelitic rocks, in Migmatites (ed. J.R. Ashworth), Blackie, Glasgow, pp. 86–140.

    Chapter  Google Scholar 

  • Hansen, E.C., Newton, R.C., and Janardhan, A.S. (1984). Fluid inclusions in rocks from the amphibolite–facies gneiss to charnockite progression in southern Karnataka, India: direct evidence concerning the fluids of granulite metamorphism. J. Met. Geology, 2, 294–364.

    Google Scholar 

  • Hanshaw, B.B. (1972). Natural-membrane phenomena and subsurface waste emplacement, in Underground Waste Management and Environmental Implications, The AAPG Memoir, 18, 308–15.

    Google Scholar 

  • Hanshaw, B.B. and Coplen, T.B. (1973). Ultrafiltration by compact clay membrane. II. Sodium ion exclusion at various ionic strengths. Geochim. Cosmochim. Acta, 37, 2311–27.

    Article  Google Scholar 

  • Jacobs, G.M. and Kerrick, D.M. (1981). Methane: an equation of state with application to the ternary system H2O−CO2−CH4. Geochim. Cosmochim. Acta, 45 (5), 607–14.

    Article  Google Scholar 

  • Johannes, W. (1984). Beginning of melting in the granite system Qtz−Or−Ab−An−H2O. Contrib. Mineral. Petrol., 86, 264–73.

    Article  Google Scholar 

  • Johannes, W. (1985). The significance of experimental studies for the formation of migmatites, in Migmatites (ed. J.R. Ashworth), Blackie, Glasgow, pp. 36–82.

    Chapter  Google Scholar 

  • Johnson, E.L. (1991). Experimentally determined limits for H2O−CO2−NaCl immiscibility in granulites. Geology, 19, 925–8.

    Article  Google Scholar 

  • Korzhinskii, D.S. (1940). The mineral equilibrium factors and abyssal mineralogical facies. Proceedings of the USSR’s Academy of Sciences Institute of Geological Sciences, 12, Academy of Sciences Press, Moscow (in Russian).

    Google Scholar 

  • Korzhinskii, D.S. (1942). The concept of geochemical mobility of elements. Zapiski Vsesoyuznogo Miner alogicheskogo Obshchestva, 71 (3–4), 160–76 (in Russian).

    Google Scholar 

  • Korzhinskii, D.S. (1945). Regularities of mineral assemblages in Archaean rock, eastern Siberia. Proceedings of the USSR’s Academy of Sciences Institute of Geosciences, 61, 111 pp. Academy of Sciences Press (in Russian).

    Google Scholar 

  • Korzhinskii, D.S. (1947). Filtration effect in solutions and its implication for geology. Izvestia Akademii Nauk SSSR, ser. Geol., 2, 35–48  (in Russian).

    Google Scholar 

  • Korzhinskii, D.S. (1949). Open systems with perfectly mobile components and the phase rule. Izvestia Akademii Nauk SSSR, ser. Geol., 2, 3–14.

    Google Scholar 

  • Korzhinskii, D.S. (1959). Physico-chemical Basis for the Analysis of the Paragenesis of Minerals. Translated from Russian. N.Y:, Consult. Bur.INC: Chapman & Hall, London.

    Google Scholar 

  • Korzhinskii, D.S. (1966). On thermodynamics of open systems and the phase rule (A reply to D.F. Weill and W.S. Fyfe). Geochim. Cosmochim. Acta, 30, 829–35.

    Article  Google Scholar 

  • Korzhinskii, D.S.(1967). On thermodynamics of open systems and the phase rule (A reply to the second critical paper of D.F. Weill and W.S. Fyfe). Geochim. Cosmochim. Acta, 31, 1177–80.

    Article  Google Scholar 

  • Kotel’nikov, A.R. and Kotel’nikova, Z.A. (1990). The phase state of the H2O−CO2−NaCl system examined from synthetic fluid inclusions in quartz. Geochem. Int., 27 (11), 55–65.

    Google Scholar 

  • Koshemchuk, S.K. (1993). Study of the regularities of two-phase infiltration through natural fine membranes in the water-gas system. Ph.D. thesis, Institute of Experimental Mineralogy, Chernogolovka (in Russian).

    Google Scholar 

  • Krauskopf, K.B. (1957). Heavy metal content of magmatic vapor. Econ. Geol., 52, 786–807.

    Article  Google Scholar 

  • Luth, W.C. (1969). The systems NaAlSi3O8−SiO2 and KAlSi3O8−SiO2 and relationship between H2O content, PH2O and P in granitic magmas. Am. J. Sci., 276–A, 325–41.

    Google Scholar 

  • Luth, W.C., Johns, R.H., and Tuttle, O.F. (1964). The granite system at pressure of 4 to 10 kilobars. J. Geophys. Soc., 69, 759–73.

    Article  Google Scholar 

  • Mackay, R.A. (1946). The control of impounding structures in ore deposition. Econ. Geol., 41 (1), 13–46.

    Article  Google Scholar 

  • Ming-Chou, I. (1986). Redetermination of phase equilibrium properties in the system NaCl-H2O to 1000°C and 1500 bars. 14th Gen. Int. Miner. Assoc., Standford, California, 13–14 July. Abst. program.

    Google Scholar 

  • Niggli, P. (1937). Das magma und Seine Produkte, 261 S. Leipzig.

    Google Scholar 

  • Pampura, V.D., Karpov, I.K., and Kuz’min, L.A. (1981). A physico-chemical model for the equilibrium composition in the system CO2−NaCl−H2O in the pressure-temperature ranges 49–1000 bar and 25–300°C. Doklady Akademii Nauk SSSR, 258 (4), 989–92 (in Russian).

    Google Scholar 

  • Perchuk, L.L., Aranovich, L.Ya., Podlesskii, K.K., et al. (1985). Precambrian granulites of the Aldan shield, eastern Siberia. J. Met. Geol., 3, 265–310.

    Article  Google Scholar 

  • Persikov, E.S. (1984). Viscosity of Magmatic Melts, Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Plyasunova, N.V. (1993). Experimental studies of equilibria in the systems H2O−CO2−NaCl and H2O−CO2−CaCl2 between 500–700°C at P = 5 kbar. Ph.D. thesis, Institute of Experimental Mineralogy, Chernogolovka (in Russian).

    Google Scholar 

  • Plyasunov, A.V. and Zakirov, I.V. (1991). Evaluation of the thermodynamic properties of H2O−CO2 homogeneous mixtures at high T and P, in Contributions to Physico-chemical Petrology, XVII, (eds V.A. Zharikov and V.V. Fed’kin), Nauka Press, Moscow (in Russian), pp. 71–88.

    Google Scholar 

  • Robie, R.A., Hemingway, B.S., and Fisher, J.R. (1978). Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Survey Bull., 1452, 456 pp.

    Google Scholar 

  • Riciputi, L.R., Valley, J.W. and McGregor, V.R. (1990). Conditions of Archaean granulite metamorphism in the Godthab-FisKenaesset region, southern West Greenland. J. Met. Geol., 8, 171–90.

    Article  Google Scholar 

  • Ryabchikov, I.D. (1975). Thermodynamics of a Fluid Phase of Granitoid Magmas, Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Sevigny, J.H. and Ghent, E.D. (1989). Pressure, temperature and fluid composition during amphibolite facies metamorphism of graphitic metapelites, Howard Ridge, British Columbia, J. Met. Geol., 7, 497–505.

    Article  Google Scholar 

  • Shmonov, V.M. and Vitovtova, V.M. (1992). Rock permeability for solution of the fluid transport problem. Experiment in Geosciences, 1 (1), 1–49.

    Google Scholar 

  • Shmonov, V.M., Vostroknutova, Z.N., and Vitovtova, V.M. (1984). On the possible influence of adsorption on fluid concentration in pores and gas-liquid inclusions, in Contributions to Physico-chemical Petrology, XII, (eds V.A. Zharikov and V.V. Fed’kin), Nauka Press, Moscow (in Russian), pp. 78–84.

    Google Scholar 

  • Shmulovich, K.I. (1975). A mineral equilibria diagram in the system CaO−Al2O3−SiO2−CO2, in Contributions to Physico-chemical Petrology, V, (eds V.A. Zharikov and V.V. Fed’kin), Nauka Press, Moscow (in Russian), pp. 258–66.

    Google Scholar 

  • Shmulovich, K.I., Shmonov, V.M., and Zharikov, V.A. (1982). The thermodynamics of supercritical fluid systems, in Advances in Physical Geochemistry (ed. Saxena, S.K.), v. 2, pp. 173–190. Springer–Verlag.

    Chapter  Google Scholar 

  • Shmulovich, K.I., Mazur, V.A., Kalinichev, A.G., and Khodarevskaya, L.I. (1980). P–V–T and component activity–concentration relations for the systems of H2O−non-polar gas type. Geochem. Int., 17 (6), 18–30.

    Google Scholar 

  • Shmulovich, K.I. (1988). Carbon Dioxide in High-temperature Mineral Formation Processes, Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Sourirajan, S. and Kennedy, G.C. (1962). The system H2O−NaCl at elevated temperatures and pressures. Am. J. Sci., 260, 115–41.

    Article  Google Scholar 

  • Sterner, S.M. and Bodnar, R.I. (1991). Synthetic fluid inclusions. X. Experimental determination of P–V–T–X properties in the CO2−H2O system to 6 kb and 700°C. Am. J. Sci., 291 (1), 1–54.

    Article  Google Scholar 

  • Susarla, V.R., Ever, A. and Franck, E.U. (1987). A new method of determining solubility of salts and simple salt mixtures at higher temperatures (0–200°C) and up to 100 bars pressure. Proc. Indian Acad. Sci., Chem. Sci., 99 (3), 195–202.

    Google Scholar 

  • Thompson, A.B. (1982). Dehydration melting of pelitic rocks and the generation of H2O−undersaturated granitic liquids. Am. J. Sci., 282, 1567–95.

    Article  Google Scholar 

  • Tkachenko, S.I. and Shmulovich, K.I. (1992). Liquid–vapour equilibria in the systems water–salt (NaCl, KCl, CaCl2, or MgCl2) at 400–600°C. Doklady Rossiiskoi Akademii Nauk, 326 (6), 1055–9.

    Google Scholar 

  • Trommsdorff, V. and Skippen, G. (1986). Vapour loss (boiling) as a mechanism for fluid evolution in metamorphic rocks. Contrib. Mineral. Petrol., 94, 317–22.

    Article  Google Scholar 

  • Tuttle, O.F. and Bowen, N.L. (1958). Origin of Granite in the Light of Experimental studies in the System NaAlSi 3 O 8 −KAlSi 3 O 8 −SiO 2 −H 2 O. Geol. Soc. Am. Memoir., 74.

    Google Scholar 

  • Valyashko, V.M., Kravchuk, K.G. and Korotayev, M.Yu. (1984). Phase states of binary aqueous solutions of inorganic substances at high T and P. Obzory Teplophisicheskikh Svoistv Veshchestv, 5 (49), 57–126 (in Russian).

    Google Scholar 

  • Voigt, W. and Fanghaenel, T. (1985). Determination of the solid–liquid equilibrium in highly concentrated salt-water systems up to 250°C. Z. Phys. Chem., 266 (3), 522–8.

    Google Scholar 

  • Weill, D.F. and Fyfe, W.S. (1964). A discussion of the Korzhinskii and Thompson treatment of thermodynamic equilibrium in open systems. Geochim Cosmochim. Acta, 28, 565–76.

    Article  Google Scholar 

  • Weill, D.F. and Fyfe, W.S. (1967). On equilibrium thermodynamics of open systems and the phase rule (A reply to D.S. Korzhinskii). Geochim. Cosmochim. Acta, 31, 1167–76.

    Article  Google Scholar 

  • White, D.E. (1955). Magmatic, connate and metamorphic waters. Bull. Geol. Soc. Am., 68, 1657–1706.

    Google Scholar 

  • Wyllie, P.J. (1977). Crustal anatexis: an experimental review. Tectonophysics, 43, 41–71.

    Article  Google Scholar 

  • Wyllie, M.R.I. (1955). Role of clay in well–log interpretation. Proceed. First Nat. Conf. on Clays and Clay Tech. Div. of Mines, State California, Bull, 169, 282–305.

    Google Scholar 

  • Yardley, B.W.D. and Bottrell, S.H. (1988). Immiscible fluids in metamorphism: implications of two-phase flow for reaction history. Geology, 16, 199–202.

    Article  Google Scholar 

  • Zavaritskii, A.N. (1926). Physico-chemical Foundations of the Petrology of Igneous Rocks, Nauchnoye Khimiko-tekhnicheskoye Izdatel’stvo, St. Petersburg (in Russian).

    Google Scholar 

  • Zhang, Y. and Frantz, J.D. (1989). Experimental determination of the compositional limits of immiscibility in the system CaCl2−H2O−CO2 at high temperatures and pressures using synthetic fluid inclusions. Chemical Geology, 74, 289–308.

    Article  Google Scholar 

  • Zharikov, V.A., Dyuzhikova, T.N., and Maksakova, E.M. (1962). Experimental and theoretical studies of the infiltration effect. The varying rate of infiltration of anions and cations. Izvestia Akademii Nauk SSSR, sex. Geol., 1, 41–63 (in Russian).

    Google Scholar 

  • Zharikov, V.A. (1965a). On the possible geochemical role of electrokinetic phenomena, in Problems of Geochemistry, volume dedicated to the 70th Anniversary of A.P. Vinogradov’s birth, Nauka Press, Moscow (in Russian), pp. 278–285.

    Google Scholar 

  • Zharikov, V.A. (1965b). Thermodynamic characteristic of irreversible natural processes. Geochem. Int., 2 (5), 873–84.

    Google Scholar 

  • Zharikov, V.A. (1968). Theoretical and experimental investigations of filtration effect. III: Electrokinetic mechanisms and a possible geochemical role, in Metasomatism and Other Issues of Physico-chemical Petrology, Nauka Press, Moscow (in Russian), pp. 9–29.

    Google Scholar 

  • Zharikov, V.A. (1976a). The Foundations of Physico-chemical Petrology, Moscow University Press (in Russian).

    Google Scholar 

  • Zharikov, V.A. (1976b). Some burning problems of experimental mineralogy. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 105 (5), 543–70 (in Russian).

    Google Scholar 

  • Zharikov, V.A. and Alekhin, Yu.V. (1971). Runs on infiltration of solutions through rock media. Doklady Akademii Nauk SSSR, 198 (2), 433–6 (in Russian).

    Google Scholar 

  • Zharikov, V.A., Ivanov, I.P, and Fonarev, V.I. (1972). Mineral Equilibria in the System K 2 O−Al 2 O 3 −H 2 O, Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Zharikov, V.A. and Alekhin, Yu.V. (1973). A filtration effect as a reason for the evolution of hydrothermal solutions. Proceedings of the International Geochemical Meeting, V. II: Hydrothermal processes, Nauka Press, Moscow (in Russian), pp. 346–61.

    Google Scholar 

  • Zharikov, V.A., Alekhin, Yu.V., and Rysikova, V.T. (1973a). Some physico-chemical regularities of infiltration of solutions through rocks, in The Role of Physico-chemical Properties of Rocks in the Localization of Endogenic Deposits, Nauka Press, Moscow (in Russian), pp. 7–25.

    Google Scholar 

  • Zharikov, V.A., Alekhin, Yu.V. and Zakirov, I.V. (1973b). The system H2O−CO2 and planetary atmosphere, in Results of Scientific Research and Engineering, ser. Geochemistry, Mineralogy, and Petrography, 7, All-Union Institute of Scientific and Technical Information (VINITI) (in Russian), pp. 5–79.

    Google Scholar 

  • Zharikov, V.A., Shmulovich, K.I., and Bulatov, V.K. (1977). Experimental study of the CuO−MgO−Al2O3−SiO2−H2O−CO2 system and conditions of contact metamorphism. Tectonophysics, 43, 145–62.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zharikov, V.A. (1994). Fluids in geological processes. In: Shmulovich, K.I., Yardley, B.W.D., Gonchar, G.G. (eds) Fluids in the Crust. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1226-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1226-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4536-0

  • Online ISBN: 978-94-011-1226-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics