Scope and limitations for application of selectivity in oxidation potential-controlled leaching of metal sulphides

  • N. L. Piret
  • J. F. Castle

Abstract

Generally in the sulphate system, oxidative leaching of metal sulphides is not conducive to selectivity, due to the unselective oxidation of sulphide to elemental sulphur or to sulphate. However, in the chloride system, the ability to control the redox potential at a lower level on account of the stability of the cupric / cuprous ion species, permits the selective dissolution with respect to copper, of metals such as Pb, Ni, Zn, Fe by means of cupric chloride, according to the metathesis reaction, provided that the sulphide mineral is thermodynamically unstable under the conditions of leaching.

In the case of easily oxidisable sulphides, such as the components of copper matte or leadsulphide, under the oxidation potential conditions, at which cuprous sulphide is converted to cupric sulphide, according to the reaction:CUS + CuCl2 → CuS + 2 CuCl, selectivity of leaching of metals (Me) in respect to copper can be achieved, according to the simplified metathesis reaction MeS + CuCl2 → MeCl2 + CuS

Thereby, the cupric/cuprous chloride leach solution can be regenerated from the covellite formed by oxidation with CI2 or HC1 and O2.

In the case of a matte, the selective leaching and regeneration occur simultaneously, according to the overall reaction: Cu2S.MeS + Cl2 → 2CuS + MeCl2

In the case of less easily oxidisable sulphide minerals, selectivity of leaching of metals with regard to copper can still be achieved by the metathesis reaction at elevated temperature. The oxidation of sulphide to sulphate is prevented by maintaining a high cuprous to cupric ratio in the chloride solution. An industrial application is the Falconbridge chlorine leach process for copper-nickel matte. Based on investigations, potential applications were identified in the field of complex or bulk metal sulphide concentrate treatment, copper-lead matte processing and also chemical converting.

The application of selectivitiy principle in sulphide leaching provides environmental benefits, since the sulphide itself is used for separation and the sulphur is brought in an environmental compatible form.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leroy J. L., Lenoir P. J. and Escoyez L. E., Lead Smelter Operation at N. V. Metallurgie Hoboken SA., in: Extractive Metallurgy of Lead and Zinc, Cotterill C. H. and Cigan J. M., TMS-AIME, (1970), chap. 28, pp. 824–852Google Scholar
  2. 2.
    Franckaerts A., Optimisation of the Lead-Sinter Plant and Blast-Furnace Operations at Metallurgie Hoboken-Overpelt, TMS-AIME Paper No. A86-53, (1986)Google Scholar
  3. 3.
    Thornhill P. G., Wigstöl E. and Van Weert G., J.O.M., 23, (July, 1971), pp. 13–18Google Scholar
  4. 4.
    Stensholt E. O., Zachariasen H. and Lund J. H., Falconbridge Chlorine Leach Process, in: Extraction Metallurgy′85, IMM, London, (Sept. 1985), Trans. IMM, C, V5, (1986), pp. 10–16Google Scholar
  5. 5.
    Lai R. and Nicol J. H., The BHAS Copper Leach Plant, TMS-AIME Paper No. A87-1, (1987)Google Scholar
  6. 6.
    Meadows N. E. and Valenti M., The BHAS Copper-Lead Matte Treatment Plant, Proc. of Non-ferrous Smelting Symposium, Port Pirie, S A., (Sept. 1989), pp. 155–157Google Scholar
  7. 7.
    Au-Yeung S. C. F. and Bolton G. L., Iron Control in Processes developed at Sherritt Gordon Mines, Proc. 16th Annual Hydrometallurgical Meeting of CIM, in: Iron Control in Hydrometallurgy, 19, (1986), chap. 6, pp. 131–151Google Scholar
  8. 8.
    Berezowsky R. M. G. S., Collins M. J., Kerfoot D. G. E. and Torres N., The Commercial Status of Pressure Leaching Technology, J.O.M., (February, 1991), pp. 9–15Google Scholar
  9. 9.
    Dutrizac J. E., The Leaching of Sulphide Minerals in Chloride Media, Hydrometallurgy, 29, (1992), pp. 1–45CrossRefGoogle Scholar
  10. 10.
    Zunkel A. D., Cuprex Metal Extraction Process (CMEP) Ready for Commercial Application, Engineering and Mining Journal, (December 1993), pp. 32-ff.Google Scholar
  11. 11.
    Hoffmann J. E., Winning Copper via Chloride Chemistry — An Elusive Technology, J.O.M., (August, 1991), pp. 48–49Google Scholar
  12. 12.
    Collins D. N., et al., Role of Chloride Hydrometallurgy in Processing of Complex (Massive) Sulphide Ores, in: P. M. J. Gray, et al. (Editors), Sulphide Deposits — Their Origin and Processing, IMM, London, (1990), pp. 233–254CrossRefGoogle Scholar
  13. 13.
    Craigen W. J. S., et al., Evaluation of the CANMET Ferric Chloride Leach Process (FCL) for the Treatment of Complex Base-Metal Ores, in: P. M. J. Gray, et al. (Editors), Sulphide Deposits — Their Origin and Processing, IMM, London, (1990), pp. 255–269CrossRefGoogle Scholar
  14. 14.
    Peters E., Direct Leaching of Sulfides, Chemistry and Applications, Metallurgical Trans. B, Vol 7B, (Dec. 1976), pp. 505–517CrossRefGoogle Scholar
  15. 15.
    Ferreira R. C. H., High Temperature E-pH Diagrams for the System S-H2O, CU-S-H2O and Fe-S-H2O, in: Leaching and Reduction in Hydrometallurgy, Ed. Burkin A. R., IMM, (1975), pp. 67–83Google Scholar
  16. 16.
    Enadimsa — Técnicas Reunidas S.A., Estudio Económico de un nuevo Procedimiento Industrial de Beneficio de Minerales Piríticos Complejos, Informe no. ITR/JM-4515/021/1978, Madrid, (Dec. 1978)Google Scholar
  17. 17.
    Druckard W. J., Canterford J. H., Dyson N. F., et al., Oxygen Pressure Leaching of a Bulk Flotation Concentrate from a Complex Cu-Pb-Zn Sulphide Ore, Non-ferrous Smelting Symposium, Port Pirie, S A., (September 1989), pp. 111–117Google Scholar
  18. 18.
    Dawson P., Acid Pressure Oxidation of Sulfide Flotation Concentrates, TMS-AIME Paper No A86-8,(1986)Google Scholar
  19. 19.
    Kuhn M. C, Arbiter N., Kling H., Anaconda’s Arbiter Process for Copper, C.I.M. Bulletin, 67, (Febr. 1974), pp. 62–73Google Scholar
  20. 20.
    Peters E., The Physical Chemistry of Hydrometallurgy, in: International Symposium on Hydrometallurgy, TMS-AIME, Chicago, (1973), chap. 10, pp. 205–228Google Scholar
  21. 21.
    Gerlach J., Pawlek F., Rödel R. et al, Der Einfluß des Gitteraufbaus von Metallverbindungen auf ihre Laugbarkeit, Erzmetall, Bd. 25, (1972), H. 9, pp. 448–453Google Scholar
  22. 22.
    Daiger K., Gerlach J., Zur Kinetik der direkten Laugung Sulfidischer Erze, Erzmetall, Bd. 35, (1982), H.12, pp. 609–611Google Scholar
  23. 23.
    Holdich R. G., Broadbent C. P., Investigation of the Dissolution of Pyrite in Copper (II) Chloride Solutions, in: Extraction Metallurgy ′85, IMM, London, (1985), pp. 645–658Google Scholar
  24. 24.
    Mukherjee T. K., Hubli R. C, Gupta C. K., A Cupric Chloride-Oxygen Leach Process for a Nickel-Copper Sulphide Concentrate, Hydrometallurgy 15, (1985), pp. 25–32CrossRefGoogle Scholar
  25. 25.
    Guy S., Broadbent C. P., Laugung eines komplexen Cu/Zn/Pb-Erzes mit Kupfer(II)-Chlorid, Aufbereitungstechnik, Nr. 9, (1983), pp. 539–547Google Scholar
  26. 26.
    Guy S., Broadbent C. P., Lawson G. S., et al., Cupric Chloride Leaching of a Complex Copper/Zinc/Lead Ore, Hydrometallurgy, 10, (1983), pp. 243–255CrossRefGoogle Scholar
  27. 27.
    Greig J. A., Oxidative Chloride Leaching of Sulphide Concentrates, in: Separation Processes in Hydrometallurgy, Ed. Davis G. A., (1987), pp. 35–48Google Scholar
  28. 28.
    Everett P. K., The Dextec Lead Process, in: Hydrometallurgy — Research, Development and Plant Practice, Ed. Osseo-Asure K., Miller J. D., TMS-AIME, New York, (1982), pp. 165–176Google Scholar
  29. 29.
    Filmer A. O., Briggs G. G., Recovery of Lead from Mixed Sulphide Concentrates, MINTEK 50 Symposium, Johannesburg, (1984)Google Scholar
  30. 30.
    Bonan M., Demarthe J. M., Renon H., et al, Chalcopyrite Leaching by CuC12 in Strong NaCl Solutions, Metallurgical Transactions B, Vol 12 B, (June 1981), pp. 269–274CrossRefGoogle Scholar
  31. 31.
    Muir D. M., Senanayaki G., Principles and Applications of Strong Salt Solutions to Mineral Chemistry, in: Extraction Metallurgy ′85, IMM, (1985)Google Scholar
  32. 32.
    Muir D. M., Ritcey G. M., Canterford J. H., Recent Developments in Chloride Hydrometallurgy, in: Symposium on Extractive Metallurgy, Aus. IMM, (Nov. 1984), pp. 153–161Google Scholar
  33. 33.
    Peters E., Applications of Chloride Hydrometallurgy to Treatment of Sulphide Minerals, in: Proc. on Chloride Hydrometallurgy, Benelux Metallurgie, Brussels (Sept. 1977), pp. 1–36Google Scholar
  34. 34.
    Canterford J. H., Chloride Hydrometallurgy — Its Future Potential, Chemeca ′83, The Eleventh Australian Conference on Chemical Engineering, Paper 2C, Brisbane, (Sept. 1983), pp. 73–82Google Scholar
  35. 35.
    Edmiston K.J., An Update on Chloride Hydrometallurgical Processes for Sulphide Concentrates, SME-AIME, Paper No 84–114, (1984)Google Scholar
  36. 36.
    Stensholt E. O., Zachariasen H., Lund J. H. and Thornhill P. G., Recent Improvements in the Falconbridge Nickel Refinery, in: Proceedings of Symposium on Extractive Metallurgy of Nickel, Cobalt, TMS-AIME, Phoenix, Az, (Jan. 1988), pp. 403–412Google Scholar
  37. 37.
    Dutrizac J. E., Chen T. T., The Effect of Elemental Sulphur Reaction Product on the Leaching of Galena in Ferric Chloride Media, Metallurgical Transactions B, Vol 21 B, (Dec 1990), pp. 935–943CrossRefGoogle Scholar
  38. 38.
    Dahms J., Gerlach J., Pawlek F., Beitrag zur Drucklaugung von Kupfersulfiden, Erzmetall, Bd. 20, (1967), H. 5, pp. 203–208Google Scholar
  39. 39.
    Kametani H., Aoki A., Potential-pH-Diagramme für das Spurstein / Digenit / Covellit-SO4-H2O Suspensionssystem bei 90°C, Erzmetall, Bd 29, (1976), H. 9, pp. 394–402Google Scholar
  40. 40.
    Johnson R. D., Miller I. B., Meadows N. E., Ricketts N. J., Oxygen Treatment of Sulphidic Materials at Atmospheric Pressure in an Acid Chloride-Sulphate Lixiviant, Proc. of Non-Ferrous Smelting Symposium, Port Pirie, S.A., (Sept. 1989), pp. 163–166Google Scholar
  41. 41.
    Cheng C. Y., Lawson F., The Leaching of Synthetic Chalcocite and Covellite in Oxygenated Acidic Sulphate-Chloride Solutions, Proc. of Non-Ferrous Smelting Symposium, Port Pirie, S.A., (Sept. 1989), pp. 167–174Google Scholar
  42. 42.
    Clevenger G. W., Pepple G. W., US Pat. 4, 384, 890, (May 24, 1983), Cupric Chloride Leaching of Copper SulphidesGoogle Scholar
  43. 43.
    Duyvesteyn W. C, et al., The Escondida Process for Copper Concentrates, in: Proc. of the Paul E. Queneau International Symposium, Extractive Metallurgy of Copper, Nickel and Cobalt, Denver, Co, 1993Google Scholar
  44. 44.
    Unpublished results of investigations by the author.Google Scholar
  45. 45.
    McGauley P. J., Roberts E. S., US Pat. 2, 568, 963, (Sept. 25,1951)Google Scholar
  46. 46.
    Yamada M., (Dowa Mining), Jap. Pat. 49-123926, (Nov. 27, 1974), Process for the Recovery of CopperGoogle Scholar
  47. 47.
    O’Neill C. E., Illis A., Huggins D. A., US Pat. 3, 616, 331, (Oct. 26, 1971), Recovery of Nickel and Copper from SulfidesGoogle Scholar
  48. 48.
    Johnson R. K., Coltrinari E. L., US Pat. 3, 957, 602, (May 18,1976), Recovery of Copper from Chalcopyrite Utilizing Copper Sulfate LeachGoogle Scholar
  49. 49.
    McKay D. R., Parker E. G., US Pat. 4, 024, 218, (May 17, 1977), Process for Hydrometallurgical UpgradingGoogle Scholar
  50. 50.
    Swinkels G. M., et al., The Sherritt Gordon — Cominco Copper Process — Part I: The Process, CIM Bulletin, (February 1978), pp. 105–121Google Scholar
  51. 51.
    Renken H. C, Zegers T. W., US Pat. 3, 655, 538, (Apr. 11,1972), Process for Electrowinning Zinc from Sulfide ConcentratesGoogle Scholar
  52. 52.
    Collier D., et al, Comparative Economics of Sulphate-Based Hydrometallurgical Processes for the Treatment of Complex Sulphide Ores, Extraction Metallurgy ′85, IMM, London, Sept. 1985, pp. 997–1014Google Scholar
  53. 53.
    Bartlett R. W., et al, A Process for Enriching Chalcopyrite Concentrates, in: Metallurgical Reactor Design and Kinetics, Ed. Bautista, et al, TMS-AIME, 1986, pp. 227–246Google Scholar
  54. 54.
    Bartlett R. W., Copper Super-Concentrates-Processing, Economics, and Smelting, EDP-Proceed-ings ′92, TMS-Annual Meeting, San Diego, Ca., March 1992Google Scholar
  55. 55.
    Goens D. N., Can. Pat. 1, 065, 615, (Jun. 11, 1979), Hydrometallurgical Purification ProcessGoogle Scholar
  56. 56.
    Piret N. L., Höpper M., Kudelka H., US Pat. 4, 260, 588, (Apr. 7, 1981), Production of Sulphidic Copper ConcentratesGoogle Scholar
  57. 57.
    Shirts M. B., et al., Aqueous Reduction of Chalcopyrite Concentrate with Metals, US Bureau of Mines RI-7953,1974Google Scholar
  58. 58.
    Hackl R., et al., Reverse Leaching of Chalcopyrite, in: Proceedings of International Conference Copper ′87, Viña del Mar, Chile, (1987), pp. 181–200Google Scholar
  59. 59.
    Sohn H.-J., et al., Reduction of Chalcopyrite with SO2 in the Presence of Cupric Ions, J.O.M., (Nov. 1980), pp. 18–22Google Scholar
  60. 60.
    Sequeira C. A. C, Electrochemical Reductive Conversion of Chalcopyrite with SO2, in: EMC ′91: Non-Ferrous Metallurgy — Present and Future, Elsevier, 1991, pp. 219–228Google Scholar
  61. 61.
    Hougen L. R., US Pat. 3, 880, 653 (Apr. 29, 1975), Chlorine Leach ProcessGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • N. L. Piret
    • 1
  • J. F. Castle
    • 2
  1. 1.Stolberg Consult GmbHNeussGermany
  2. 2.RTZ Consultants, LtdBristolEngland

Personalised recommendations