Image 2.0 pp 259-281 | Cite as

Atmospheric Composition Calculations for Evaluation of Climate Scenarios



The future radiative forcing by non-CO2 greenhouse gases depends strongly on the behavior of the OH radical, which represents the primary sink for CH4, CO and H(C)FCs in the atmosphere. We present a simple model to describe the changes in the concentration of the main greenhouse gases. The focus is on the description of the atmospheric chemistry of OH and the important tropospheric oxidant and greenhouse gas O3. Changes in the equilibrium concentrations of these oxidants will change the trends in the concentrations of greenhouse gases, especially CH4. The model is applied to the 1992 IPCC emissions scenarios, as well as to an IMAGE 2.0 scenario, based on “Conventional Wisdom” assumptions. We find the following major results: for the central estimate of emissions assuming no additional policies (IS92a), the concentration of CH4 keeps rising at rates similar to those observed over the last decades; results for the other IS92 scenarios range from stabilization early in the next century (IS92d) to an ever increasing rate of accumulation of CH4 in the atmosphere (IS92f), even though these scenarios assume no policy interventions. The IMAGE 2.0 Conventional Wisdom scenario is similar to IS92a before the year 2025; afterwards the expansion of agricultural area significantly decreases the emissions of hydrocarbons and NOx from savanna burning, not represented in the IS92 scenarios. This leads to stable levels of atmospheric CH4 after 2025.


atmospheric chemistry CH4 OH O3 emissions scenarios integrated modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcamo, J., G.J.J Kreileman, M.S. Krol and G. Zuidema: 1994a, Modeling the global society-biosphere-climate system, Part 1: Model description and testing. Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  2. Alcamo, J., G.J. van den Born, A.F. Bouwman, B. de Haan, K. Klein Goldewijk, O. Klepper, J. Krabec, R. Leemans, J.G.J Olivier, A.M.C Toet, H.J.M Vries, H J.M. van der Woerd: 1994b, Modeling the global societybiosphere-climate system, Part 2: Computed scenarios, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  3. Atkinson, R.: 1985, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 85: 69–201.Google Scholar
  4. Beck, J.P., C.E. Reeves, F.A.A.M. De Leeuw and A. Penkett: 1992, The effect of aircraft emissions on tropospheric ozone in the northern hemisphere, Atm. Env., 26A(1): 17–29.Google Scholar
  5. Brühl, C. and P. J. Crutzen: 1988, Scenarios of possible changes in atmospheric temperatures and ozone concentrations due to man’s activities, estimated with a one-dimensional coupled photochemical climate model, Clint. Dyn., 2: 173–203.CrossRefGoogle Scholar
  6. Guthrie, P. D. and G. Yarwood: 1991, Analysis of the Intergovernmental Panel of Climate Change (IPCC) Future Methane Emissions, Report SYS-APP-91/114, Systems Applications International.Google Scholar
  7. Haan, B.J. de, Jonas, M., Klepper, O., Krabec, J., Krol, M.S. and Olendrzynski, K.: 1994, An atmosphere-ocean model for integrated assessment of global change, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  8. Hough, A. M.: 1991, Development of a two-dimensional global tropospheric model: model chemistry. J. Geophys. Res., 96(D4): 7325–7362.CrossRefGoogle Scholar
  9. Hough, A. M. and R. G. Derwent: 1990, Changes in the global concentration of tropospheric ozone due to human activities, Nature, 344: 645–648.CrossRefGoogle Scholar
  10. IPCC: 1990, J.T. Houghton, G.J. Jenkins and J.J. Ephraums (eds), Climate Change. The IPCC Scientific Assessment, Cambridge Univ. Press.Google Scholar
  11. IPCC: 1991, Climate Change: The IPCC Response Strategies, Island Press.Google Scholar
  12. IPCC: 1992, J.T. Houghton, B.A. Callander and S.K. Varney (eds), Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment, Cambridge Univ. Press.Google Scholar
  13. Isaksen, I.S.A. and Ø. Hov: 1987, Calculation of trends in the tropospheric concentration of O3, OH, CO, CH4 and NOx, Tellus, 39B: 271–285.CrossRefGoogle Scholar
  14. Klein Goldewijk, K., J.G. van Minnen, G.J.J Kreileman, M. Vloedbeld and R. Leemans: 1994, Simulating the carbon flux between terrestrial environment and the atmosphere, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  15. Kreileman, G.J.J. and A.F. Bouwman: 1994, Computing land use emissions of greenhouse gases, Wat. Air Soil Pollut., 75 (this volume).Google Scholar
  16. Krol, M.S.: 1994, Uncertainty analysis for the computation of greenhouse gas concentrations in IMAGE. In: J. Grasman and G. van Straten (eds), Predictability and Nonlinear Modelling in Natural Sciences and Economics, Kluwer.Google Scholar
  17. Liu, S.C., M. Trainer, F.C. Fehsenfeld, D.D. Parrish, E.J. Williams, D.W. Fahey, G. Hubler and P.C. Murphy: 1987, Ozone production in the rural troposphere and the implications for regional and global ozone distributions, J. Geoph. Res., 92(D4): 4191–4207.CrossRefGoogle Scholar
  18. Logan, J.A., MJ. Prather, S.C. Wofsy and M.S. McElroy: 1981, Tropospheric chemistry: a global perspective. J. Geophys. Res., 86: 7210–7254.CrossRefGoogle Scholar
  19. Madronich, S. and C. Granier: 1992, Impact of recent total ozone changes on tropospheric photodissociation, hydroxyl radicals, and ethane trends, Geophys. Res. Lett., 19: 465–467.CrossRefGoogle Scholar
  20. Mikolajevich, U., B.D. Santer and E. Maier-Reimer: 1990, Ocean response to greenhouse warming, Nature 345: 589–593.CrossRefGoogle Scholar
  21. Prather, M. and CM. Spivakovsky: 1990, Tropospheric OH and the lifetimes of hydrochlorofluorocarbons, J. Geophys. Res., 95: 18723–18729.CrossRefGoogle Scholar
  22. Prather, M. J.: 1989, An Assessment Model for Atmospheric Composition, NASA Conf. Publ. 3023, NASA, New York.Google Scholar
  23. Prinn, R., D. Cunnold, P. Simmonds, F. Alyea, R. Boldi, A. Crawford, P. Fraser, D. Gutzler, D. Hartley, R. Rosen and R. Rasmussen: 1992, Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978-1990, J. Geophys. Res., 97(D2): 2445–2461.CrossRefGoogle Scholar
  24. Roemer, M.G.M.: 1991, Ozone and the Greenhouse Effect, Report No. R 91/227, IMW/TNO, Delft, the Netherlands.Google Scholar
  25. Rotmans, J., M.G.J den Elzen, M.S. Krol, R.J. Swart and H. van der Woerd: 1992, Stabilizing atmospheric concentrations: towards international methane control, Ambio, 21(6): 404–413.Google Scholar
  26. Steele, L.P., E.J. Dlugokencky, P.M. Lang, P.P. Tans, R.C. Martin and K.A. Masarie: 1992, Slowing down of the global accumulation of atmospheric methane during the 1980s, Nature, 358: 313–316.CrossRefGoogle Scholar
  27. Talukdar, R.K., A. Mellouki, A.-M. Schmoltner, T. Watson, S. Montzka and A.R. Ravishankara: 1992, Kinetics of the OH reaction with methyl chloroform and its atmospheric implications, Science, 257: 227.CrossRefGoogle Scholar
  28. Thompson, A.M., R.W. Stewart, M.A. Owens and J.A. Herwehe: 1989, Sensitivity of tropospheric oxidants to global chemical and climate change, Atm. Env., 23(3): 519–532.CrossRefGoogle Scholar
  29. Thompson, A.M., M.A. Huntley and R.W. Stewart: 1990, Perturbations to tropospheric oxidants, 1985-2035 1. calculations of ozone and OH in chemically coherent regions, J. Geophys. Res., 95(D7): 9829–9844.CrossRefGoogle Scholar
  30. Thompson, A.M.: 1992, The oxidizing capacity of the earth’s atmosphere: probable past and future changes, Science, 256: 1157–1165.CrossRefGoogle Scholar
  31. Vaghjiani, G.L. and A.R. Ravishankara: 1991, New measurement of the rate coefficient for the reaction of OH with methane, Nature, 350: 406–409.CrossRefGoogle Scholar
  32. Vries, H.J.M. de, R.A. van den Wijngaart, G.J.J Kreileman, J.G.J Olivier and A.M.C Toet: 1994, Amodel for calculating regional energy use and emissions for evaluating global climate scenarios, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  33. Wigley, T.M.L. and S.C.B Raper: 1992, Implications for climate and sea level of revised IPCC emissions scenarios, Nature, 357: 293–300.CrossRefGoogle Scholar
  34. WMO: 1992, Scientific Assessment of Ozone Depletion-1991, Global Ozone Research and Monitoring Project, Rep. No. 25., WMO.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  1. 1.National Institute of Public Health and Environmental Protection (RIVM)Bilthoventhe Netherlands

Personalised recommendations