Skip to main content

Mathematical Modelling of Localised Corrosion

  • Chapter
Modelling Aqueous Corrosion

Part of the book series: NATO ASI Series ((NSSE,volume 266))

Abstract

An assessment is made of the present capability in mechanistic modelling of the chemistry and electrochemistry in pits and crevices. Advances in computing technology have enabled the development of increasingly more rigorous models. However, the quantitative prediction of observed behaviour has been highly variable and remains unsatisfactory as a basis for absolute prediction of pit growth and crevice corrosion propagation. The uncertainty in prediction is primarily associated with the complexity of real systems and also with the reliability of the database for the input parameters. Mechanistic modelling should be viewed primarily as a tool for providing insight and an improved judgemental basis for making decisions in practical circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Turnbull. “Review of modelling of pit propagation kinetics”, accepted for publication in British Corrosion J., 1993.

    Google Scholar 

  2. A. Turnbull. “Review of the electrochemical conditions in cracks with particular reference to corrosion fatigue of steels in seawater”, Reviews on Corrosion and Coatings, Vol. 5, 1982, 43–171.

    CAS  Google Scholar 

  3. S. Sharland. “Review of the theoretical modelling of crevice and pitting corrosion”, Corrosion Science, Vol. 27, No. 3, 1987, 289–323.

    Article  CAS  Google Scholar 

  4. J. Newman. Electrochemical Systems, Prentice Hall, New Jersey, USA, 1973.

    Google Scholar 

  5. J.N. Harb and R.C. Alkire. “Transport and reaction during pitting corrosion of Ni in 0.5 M NaCl. 1. Stagnant fluid”. J. Electrochem Soc, Vol. 138, No. 9, 1991, 2594–2600.

    Article  CAS  Google Scholar 

  6. A. Turnbull. “Theoretical evaluation of the dissolved oxygen concentration in a crevice on crack in a metal in aqueous solution”. British Corrosion J., Vol. 15, No. 4, 1980, 163–171.

    Google Scholar 

  7. Yu-C Chang and G. Prentice. “Calculation of pH near the surface of an electrode covered with a porous film.” Electrochim Acta, Vol. 31, No. 5, 1986, 579–584.

    Article  CAS  Google Scholar 

  8. A. Turnbull. “Crack-tip electrochemistry -recent developments”, Chemistry and physics of Fracture, R.M. Latanisian and R.H. Jones, Eds NATO ASI Series, Martinus Nijhoff, Dordrecht, The Netherlands, 1987, 287–310.

    Chapter  Google Scholar 

  9. A. Turnbull and J.G.N. Thomas. “A model of crack electrochemistry for steels in the active state”. NPL Report DMA(A)11, 1979 National Physical Laboratory, Teddington, UK.

    Google Scholar 

  10. G.T. Gaudet, W.T.Mo, T.A. Hatton, J.W. Tester, J. Tilly, H.S. Isaacs and R.C. Newman. “Mass transfer and electrochemical kinetic interactions in localised pitting corrosion”, A.I.Ch.E. Journal, Vol. 32, No. 6, 1986, 949–958.

    Article  CAS  Google Scholar 

  11. M. Psaila-Dombrowski, A. Turnbull and R.G. Ballinger. “Implications of crevice chemistry for cracking of BWR recirculation inlet safe-ends”. Life Prediction of Corrodible Structures, Cambridge, UK, 1991, National Association of Corrosion Engineers.

    Google Scholar 

  12. M. Takahashi. Boshoku Gijutsu, Vol. 23, No. 12, 1974, 615.

    Google Scholar 

  13. E. McCafferty. “Use of activity coefficients to calculate the equilibrium conditions within a localised corrosion cell on iron”. J. Electrochem. Soc., Vol. 128, 1981, 39–44.

    Article  CAS  Google Scholar 

  14. H. Boehni and F. Hunkeler. “Growth kinetics and stability of localised corrosion processes”. Advances in localised corrosion, Eds H. Isaacs, U. Bertocci, J. Kruger and S. Smialowska.

    Google Scholar 

  15. S.G. Corcoran and K. Sieradzki. “Chaos during the growth of an artificial pit”. J. Electrochem. Soc., Vol. 139, No. 6, 1992, 1568–1573.

    Article  CAS  Google Scholar 

  16. M.A. Baker and J.E. Castle. “The initiation of pitting corrosion at MnS inclusions”. Corrosion Science, Vol. 34, No. 4, 1993, 667–682.

    Article  CAS  Google Scholar 

  17. J.R. Galvele. “Transport processes and the mechanism of pitting of metals”. J. Electrochem. Soc., Vol. 123, No. 4, 1976, 464–474.

    Article  CAS  Google Scholar 

  18. P.C. Pistorius and G.T. Burstein. “Growth of corrosion pits on stainless steel in chloride solutions containing dilute sulphate”, Corrosion Science, Vol. 33, No. 12, 1993, 1885–1898.

    Article  Google Scholar 

  19. J.W. Fu and S.K. Chan. “A finite element method for modelling localised corrosion cells”, Corrosion, Vol. 40, No. 10, 1984, 540–544.

    Article  CAS  Google Scholar 

  20. S.M. Sharland and P.W. Tasker. “A mathematical model of crevice and pitting corrosion. 1. The physical model”, Corrosion Science, Vol. 28, No. 6, 1988, 603–620.

    Article  CAS  Google Scholar 

  21. S.M. Sharland, C.P. Jackson and A.J. Diver. “A finite element model of the propagation of corrosion crevices and pits”. Corrosion Science, Vol. 29, No. 9, 1989, 1149–116.

    Article  CAS  Google Scholar 

  22. A. Turnbull and J.G.N. Thomas. “A model of crack electrochemistry for steels in the active state based on diffusion and ion migration”, J. Electrochem. Soc., Vol. 129, No. 7, 1982, 1412–1422.

    Article  CAS  Google Scholar 

  23. J.A. Beavers and N.G. Thompson. “Technical note: Effect of pit wall reactivity on pit propagation in carbon steel”, Corrosion, Vol. 43, 1987, 185.

    Article  CAS  Google Scholar 

  24. R.N. Parkins, A.J. Markworth, J.H. Holbrook and R.R. Fesseler. “Hydrogen gas evolution from cathodically protected crevices”. Corrosion, Vol. 41, No. 7, 1985, 389.

    Article  CAS  Google Scholar 

  25. C.C. Naish, G.P. Marsh, S.M. Sharland and K.J. Taylor. “An integrated experimental and modelling approach to the prediction of localised corrosion on carbon steel”. Life Prediction of Corrodible Structures, Cambridge, UK, 1991, National Association of Corrosion Engineers.

    Google Scholar 

  26. J.N. Harb and R.C. Alkire. “Transport and reaction during pitting corrosion of Ni in 0.5 M NaCl. II. Flowing fluid”. J. Electrochem. Soc., Vol. 138, No. 12, 1991, 3568–3575.

    Article  CAS  Google Scholar 

  27. J.W. Oldfield and W.H. Sutton. “Crevice corrosion of stainless steels. 1. A mathematical model”, British Corrosion J., Vol. 13, No. 1, 1978, 13.

    CAS  Google Scholar 

  28. H.W. Pickering. “A critical review of IR drops and electrode potentials within pits, crevices and cracks”, Advances in Localised Corrosion, Eds H. Isaacs, U. Bertocci, J. Kruger and S. Smialowska, National Association of Corrosion Engineers, Houston, Texas, 1990, 77–84.

    Google Scholar 

  29. R.C. Alkire and S.E. Lott. “The role of inclusions on initiation of crevice corrosion of stainless steel. II. Theoretical studies.” J. Electrochem. Soc., Vol. 136, No. 11, 1989, 3256–3262.

    Article  CAS  Google Scholar 

  30. M. Watson and J. Postlethwaite. “Numerical simulation of crevice corrosion of stainless steels and nickel alloys in chloride solutions”. Corrosion, Vol. 46, No. 7, 1990, 522–530.

    Article  CAS  Google Scholar 

  31. M.K. Watson and J. Postlethwaite. “Numerical simulation of crevice corrosion: the effect of the crevice gap profile”, Corrosion Science, Vol. 32, No. 11, 1991, 1253–1262.

    Article  CAS  Google Scholar 

  32. S.M. Sharland. “A mathematical model of the initiation of crevice ocrrosion in metals”. Corrosion Science, Vol. 33, No. 2, 1992, 183–202.

    Article  CAS  Google Scholar 

  33. D. Tromans and L. Frederick. “Electrochemical studies of crevice corrosion rates on stainless steels”, Corrosion, Vol. 39, No. 8, 1983, 305–312.

    Article  CAS  Google Scholar 

  34. S.J. Mulford and D. Tromans. “Crevice corrosion of nickel-base alloys in neutral chloride and thiosulphate solutions”, Corrosion, Vol. 44, No. 12, 1988, 891–899.

    Article  CAS  Google Scholar 

  35. J.L. Crolet. “Discussion of Numerical simulation of crevice corrosion of stainless steels and nickel alloys in chloride solutions”, Corrosion, Vol. 47, No. 8, 1991, 590–591.

    Article  CAS  Google Scholar 

  36. J. Mankowski and Z. Szklarska-Smialowska. “Studies of accumulation of chloride ions in pits growing during anodic polarisation”, Corrosion Science, Vol. 15, 1975, 493.

    Article  CAS  Google Scholar 

  37. A. Turnbull. The solution composition and electrode potential in pits, crevices and cracks, Corrosion Science, Vol. 23, No. 8, 1983, 833–870.

    Article  CAS  Google Scholar 

  38. F.D. Bogar and C.T. Fujii. “Solution chemistry in crevices on Fe-Cr binary alloys”, US Nat. Tech. Inform. Serv. AD Rep No. 778002/6GA, 1974.

    Google Scholar 

  39. A. Alavi and R.A. Cottis. “The determination of pH, potential and chloride ion concentration in corroding crevices in 304 stainless steel and 7475 aluminium alloy”, Corrosion Science, Vol. 27, 1987, 443–451.

    Article  CAS  Google Scholar 

  40. J.C. Walton. “Mathematical modelling of mass transport and chemical reaction in crevice and pitting corrosion”, Corrosion Science, Vol. 30, No. 8/9, 1990, 915–928.

    Article  CAS  Google Scholar 

  41. M. Psaila-Dombrowski. Modelling of crack and crevice chemistry in light water reactor environments. Ph.D. Thesis, Massachusetts Institute of Technology, 1990.

    Google Scholar 

  42. B.A. Shaw, P.J. Moran and P.O. Gartland. “The role of ohmic potential drop in the initiation of crevice corrosion on alloy 625 on seawater”, Corrosion Science, Vol. 33, No. 7, 1991, 707–719.

    Article  Google Scholar 

  43. Y. Xu and H.W. Pickering. “The initial potential and current distributions of the crevice corrosion process”, J. Electrochem. Soc., Vol. 140, No. 3, 1993, 658–668.

    Article  CAS  Google Scholar 

  44. R.J. Brigham. “The thermodynamics of crevice, corrosion initiation”, Corrosion Science, Vol. 28, No. 1, 1988, 57–60.

    Article  CAS  Google Scholar 

  45. R.J. Brigham. “Crevice corrosion initiation and the potential of zero charge”, Corrosion Science, Vol. 29, No 8, 1989, 995–1001.

    Article  CAS  Google Scholar 

  46. D.W. Shoesmith. “Modelling procedures for predicting the lifetimes of nuclear waste containers”, (this volume.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Turnbull, A. (1994). Mathematical Modelling of Localised Corrosion. In: Trethewey, K.R., Roberge, P.R. (eds) Modelling Aqueous Corrosion. NATO ASI Series, vol 266. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1176-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1176-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4513-1

  • Online ISBN: 978-94-011-1176-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics