Skip to main content

Nuclear Spin Relaxation Formalism for Liquid Crystals

  • Chapter
The Molecular Dynamics of Liquid Crystals

Part of the book series: NATO ASI Series ((ASIC,volume 431))

  • 387 Accesses

Abstract

The background required for characterising molecular dynamics in liquid crystals by NMR spectroscopy and nuclear spin relaxation is outlined. The need for multiple Euler angle transformations to describe the complex molecular motion is discussed, and illustrated by a description of deuterium relaxation in the presence of rotational diffusion of deuteriated spin probes. By selecting deuteriated solutes with and without internal degrees of motion and with very different rotational correlation times we illustrate the complexity of analysing relaxation behaviour in mesogenic molecules compared with that of small rigid solutes. The relaxation of the latter is much more sensitive to contributions from director fluctuations in the radio frequency region compared with that of the mesogenic molecules themselves for which multiple relaxation pathways exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mackor, E. L. and MacLean, C. (1965) J. chem. Phys., 42 4254.

    Article  ADS  Google Scholar 

  2. Freeman, R. and Wittekoek, S. (1969) J. Magn. Reson., 1 238.

    Google Scholar 

  3. Lynden-Bell, R. M. (1967) Prog. NMR Spec., 2 163.

    Article  Google Scholar 

  4. Vold, R. L. and Vold, R. R. (1978) Prog. NMR Spec., 12 79.

    Article  Google Scholar 

  5. Khazanovich, T. N. and Zitserman, V. Yu. (1971) Molec. Phys., 12 79.

    Google Scholar 

  6. Torrey, H. C. (1953) Phys. Rev., 92 962.

    Article  ADS  MATH  Google Scholar 

  7. Zumer, S. and Vilfan, M. (1978) Phys. Rev. A, 17 424.

    Article  ADS  Google Scholar 

  8. Jeener, J. (1968) Adv. Magn. Reson., 3 205.

    Google Scholar 

  9. Abragam, A. (1961) The Principles of Nuclear Magnetism, University Press, Oxford.

    Google Scholar 

  10. Slichter, C. P. (1963) Principles of Magnetic Resonance, Harper and Row, New York.

    Google Scholar 

  11. Werbelow, L. G. and Grant, D. M. (1977) Adv. Magn. Reson., 9 190.

    Google Scholar 

  12. Werbelow, L. G., Grant, D. M., Black, E. P. and Courieu, J. M. (1978) J. chem. Phys., 69 2407.

    Article  ADS  Google Scholar 

  13. Black, E. P., Bernassau, J. M., Mayne, C. L. and Grant, D. M. (1982) J. chem. Phys., 76 265.

    Article  ADS  Google Scholar 

  14. Bemassau, J. M., Black, E. P. and Grant, D. M. (1982) J. chem. Phys., 76 253.

    Article  ADS  Google Scholar 

  15. Redfield, A. G. (1965) Adv. Magn. Reson., 1 1.

    Google Scholar 

  16. Vold, R. L. (1985) NMR in Liquid Crystals, J. W. Emsley (ed.), Reidel, Dordrecht, Holland, p. 231.

    Google Scholar 

  17. Ahmad, S. B. and Packer, K. J. (1979) Molec. Phys., 37 59.

    Article  ADS  Google Scholar 

  18. Jacobsen, J. P., Bildsoe, H. K. and Schaumburg, K. (1976) J. Magn. Reson., 23 153.

    Google Scholar 

  19. Wong, T. C. and Jeffrey, K. R. (1982) Molec. Phys., 46 1.

    Article  ADS  Google Scholar 

  20. Vold, R. R., Vold, R. L. and Szeverenyi, N. M. (1981) J. phys. Chem., 85 1934.

    Article  Google Scholar 

  21. Vold, R. R. (1985) Nuclear Magnetic Resonance in Liquid Crystals, J. W. Emsley (ed.), Reidel, Dordrecht, Holland, p. 253.

    Google Scholar 

  22. Beckman, P. A., Emsley, J. W., Luckhurst, G. R. and Turner, D. L. (1983) Molec. Phys. 50 699.

    Article  ADS  Google Scholar 

  23. Blicharski, J. S. (1972) Z. Naturforsch, 27a 1456.

    ADS  Google Scholar 

  24. Brondeau, J., Canet, D., Millot, C., Nery, H. and Werbelow, L. (1985) J. chem. Phys., 82 2212.

    Article  ADS  Google Scholar 

  25. Rose, M. E. (1957) Elementary Theory of Angular Momentum, Wiley, New York.

    MATH  Google Scholar 

  26. Zannoni, C. (1985) Nuclear Magnetic Resonance of Liquid Crystals, J. W. Emsley (ed.), Reidel Publishing Corn., Dordrecht, Holland.

    Google Scholar 

  27. Greenfield, M. S., Vold, R. L. and Vold, R. R. (1985) J. chem. Phys., 83 1440.

    Article  ADS  Google Scholar 

  28. Tarr, C. E., Nickerson, M. A. and Smith, C. W. (1970) Appl. Phys. Left., 17 318.

    Article  ADS  Google Scholar 

  29. Barbara, T. M., Vold, R. R. and Vold, R. L. (1983) J. chem. Phys., 79, 6338.

    Article  ADS  Google Scholar 

  30. Jeener, J. and Broakaert, P. (1967) Phys. Rev., 157 232.

    Article  ADS  Google Scholar 

  31. Hubbard, P. S. (1970) J. chem. Phys., 52 563.

    Article  ADS  Google Scholar 

  32. Huntress, W. T. (1970) Adv. Magn. Reson., 4 1.

    Google Scholar 

  33. Nordio, P. L. and Busolin, P. (1971) J. chem. Phys., 55 5485.

    Article  ADS  Google Scholar 

  34. Polnaszek, C. F. and Freed, J. H. (1975) J. chem. Phys., 79 2283.

    Article  Google Scholar 

  35. Moro, G. and Nordio, P. L. (1985) J. chem. Phys., 89 997.

    Article  Google Scholar 

  36. Vold, R. R. and Vold, R. L. (1988) J. chem. Phys., 88 1443.

    Article  ADS  Google Scholar 

  37. Freed, J. H. (1977) J. chem. Phys., 66 4183.

    Article  ADS  Google Scholar 

  38. Polnaszek, C. F., Bruno, G. V. and Freed, J. J. (1973) J. chem. Phys., 58 3185.

    Article  ADS  Google Scholar 

  39. Bulthuis, J. private communication.

    Google Scholar 

  40. Beckmann, P. A., Emsley, J. W., Luckhurst, G. R. and Turner, D. L. (1986) Molec. Phys., 59 97.

    Article  ADS  Google Scholar 

  41. Glarum, S. H. and Marshall, J. H. (1967) J. chem. Phys., 46 55.

    Article  ADS  Google Scholar 

  42. Bildsoe, H., Jacobsen, J. P. and Schaumburg, K. (1976) J. Magn. Reson., 23 137.

    Google Scholar 

  43. Luckhurst, G. R. and Sanson, A. (1972) Molec. Phys., 24 1297.

    Article  ADS  Google Scholar 

  44. Private communication.

    Google Scholar 

  45. Torchia, D. A. and Szabo, A. (1982) J. Magn. Reson., 49 107.

    Google Scholar 

  46. Blinc, R., Luzar, M., Vilfan, M. and Burgar, M. (1975) J. chem. Phys., 63 3445.

    Article  ADS  Google Scholar 

  47. Vilfan, M., Blinc, R., Dolinsek, J., Ipavec, M., Lahajanar, G. and Zumer, S. (1983) J. Physique, 44 1179.

    Article  Google Scholar 

  48. Pincus, P. (1969) Solid State Commun., 7 415.

    Article  ADS  Google Scholar 

  49. Doane, J. W. and Visintainer, J. J. (1969) Phys. Rev. Lett., 23 1421.

    Article  ADS  Google Scholar 

  50. Blinc, R., Hogenbloom, D. L., O’Reilly, D. E. and Peterson, E. M. (1969) Phys. Rev. Lett., 23 969.

    Article  ADS  Google Scholar 

  51. Vilfan, M., Kogoj, M. and Blinc, R. (1987) J. chem. Phys., 86 1055.

    Article  ADS  Google Scholar 

  52. Warner, M. (1984) Molec. Phys., 52 677.

    Article  ADS  Google Scholar 

  53. Dickerson, W. H., Vold, R. R. and Vold, R. L. (1983) J. Phys. Chem., 87 166.

    Article  Google Scholar 

  54. Lopes Cardozo, H. A., Bulthuis, J. and MacLean, C. (1979) J. Magn. Reson., 33 27.

    Google Scholar 

  55. Luyten, P. R., Bulthuis, J., Bovee, W. M. M. J. and Plomp, L. (1983) J. chem. Phys., 78 1712.

    Article  ADS  Google Scholar 

  56. Plomp, L., Lohman, A. C. and Bulthuis, J. (1986) J. chem. Phys., 84 6591.

    Article  ADS  Google Scholar 

  57. Voigt, J. and Jacobsen, J. P. (1983) J. chem. Phys., 78 1693.

    Article  ADS  Google Scholar 

  58. Data for BBA were obtained in our laboratory by David Ikenberry, in partial fulfillment of the requirements for a Ph.D. in chemistry, and will be analysed elsewhere in detail.

    Google Scholar 

  59. Dong, R. Y. (1983) Israel J. Chem., 23 370.

    Google Scholar 

  60. Noack, F., Notter, M. and Weiss, W. (1988) Liq. Crystals, 3 907.

    Article  Google Scholar 

  61. Noack, F. (1986) NMR Spectry., 18 171.

    Article  Google Scholar 

  62. Stoher, M. and Noack, F. (1977) J. chem. Phys., 67 3729.

    Article  ADS  Google Scholar 

  63. Wade, C. G. (1977) Ann. Rev. Phys. Chem., 28 47.

    Article  ADS  Google Scholar 

  64. Rutar, V., Vilfan, M., Blinc, R. and Bock, E. (1978) Molec. Phys., 35 721.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vold, R.L., Vold, R.R. (1994). Nuclear Spin Relaxation Formalism for Liquid Crystals. In: Luckhurst, G.R., Veracini, C.A. (eds) The Molecular Dynamics of Liquid Crystals. NATO ASI Series, vol 431. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1168-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1168-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4509-4

  • Online ISBN: 978-94-011-1168-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics