Skip to main content

Diffusion Models for Molecular Motion in Uniaxial Mesophases

  • Chapter
The Molecular Dynamics of Liquid Crystals

Part of the book series: NATO ASI Series ((ASIC,volume 431))

Abstract

Diffusion equations are used to describe rotational, translational and internal motions of molecules in uniaxial liquid crystal phases. In addition to exact numerical solutions based on eigenfunction expansions, approximate procedures are also presented to gain direct insight into the relevant aspects of the dynamical problems. Inherent limitations, intrinsic time scale separations and improvements of the model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van Kampen, N. G. (1987) Stochastic Processes in Physics and Chemistry, North Holland, Amsterdam.

    Google Scholar 

  2. Pedersen, J. B. (1972) Electron Spin Relaxation in Liquids, L. T. Muus and P. W. Atkins (eds.), Plenum Press, New York, Chap. II.

    Google Scholar 

  3. Nordio, P. L. and Segre, U. (1979) The Molecular Physics of Liquid Crystal, G.R. Luckhurst and G. W. Gray (eds.), Academic Press, Chaps. 16, 18 and 19.

    Google Scholar 

  4. Moro, G., Segre, U. and Nordio, P. L., (1985) Nuclear Magnetic Resonance of Liquid Crystals, J. W. Emsley (ed.),D. Reidel Publishers, Dordrecht, p. 270.

    Google Scholar 

  5. Berne, B. J. (1971) Physical Chemistry VIII B, D. Henderson and W. Jost (eds.), Academic Press, New York.

    Google Scholar 

  6. Hynes, J. T. and Deutch, J. M. (1975) Physical Chemistry XI B, D. Henderson and W. Jost (eds.), Academic Press, New York.

    Google Scholar 

  7. Moro, G. and Nordio, P. L. (1982) Chem. Phys. Letters, 93 429.

    Article  ADS  Google Scholar 

  8. Moro, G. and Nordio, P. L. (1984) Molec. Crystals liq. Crystals, 104 361.

    Article  Google Scholar 

  9. Leadbetter, A. J. and Richardson, R. M. (1979) The Molecular Physics of Liquid Crystals, G. R. Luckhurst and G. W. Gray (eds.), Academic Press, Chap. 20.

    Google Scholar 

  10. Moro, G. and Nordio, P. L. (1985) J. phys. Chem., 89 997.

    Article  Google Scholar 

  11. Gorchester, J., Rananavare, S. B. and Freed, J. H. (1989) J. chem. Phys., 90 5764.

    Article  ADS  Google Scholar 

  12. Rose, M. E. (1957) Elementary theory of Angular Momentum, J. Wiley and Sons Publishers, New York.

    MATH  Google Scholar 

  13. Brink, D. M. and Satchler, G. R. (1968), Angular Momentum, Clarendon Press, Oxford.

    Google Scholar 

  14. EISPACK, Argonne Code Center, Argonne National Laboratory.

    Google Scholar 

  15. Cullum, J. and Willoughby R. A. (1985) Lanczos Algorithm for Large Symmetric Eigenvalue Computations, Birkhauser, Basel.

    Google Scholar 

  16. Moro, G. and Freed, J. H. (1981) J. chem. Phys., 74, 3757.

    Article  MathSciNet  ADS  Google Scholar 

  17. Moro, G. and Freed, J. H. (1986) Large Scale Eigenvalue Problems, J. Cullum and R. A. Willoughby (eds.), North Holland, Amsterdam.

    Google Scholar 

  18. Moro, G. and Polimeno, A. (1989) Chem. Phys., 131, 281.

    Article  Google Scholar 

  19. Luckhurst, G. R., Zannoni, C., Nordio, P. L. and Segre, U. (1975) Molec. Phys., 30, 1345.

    Article  ADS  Google Scholar 

  20. Vold, R. R. (1985) Nuclear Magnetic Resonance in Liquid Crystals, J. W. Emsely (ed.), D. Reidel Publishers, Dordrecht.

    Google Scholar 

  21. Nordio, P. L. and Segre, U. (1977) J. magn. Res., 27, 465.

    Google Scholar 

  22. Vold, R. R. and Vold, L. R. (1988) J. chem. Phys., 88, 1443.

    Article  ADS  Google Scholar 

  23. Moro, G. and Nordio, P. L. (1983) Chem. Phys. Letts., 96, 192.

    Article  ADS  Google Scholar 

  24. Kramers, H. A. (1940) Physica, 7, 284.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Humphries, R. L. and Luckhurst, G. R. (1978) Molec. Phys., 35, 1201.

    Article  ADS  Google Scholar 

  26. Moro, G. and Nordio, P. L. (1985) Molec. Phys., 56, 225.

    Article  ADS  Google Scholar 

  27. Moro, G. and Nordio, P. L. (1986) Molec. Phys., 57, 947.

    Article  ADS  Google Scholar 

  28. Nordio, P. L., Rigatti, G. and Segre, U. (1973) Molec. Phys., 25 129.

    Article  ADS  Google Scholar 

  29. Langer, J. S. (1969) Ann. Phys., 54 258.

    Article  ADS  Google Scholar 

  30. Ferrarini, A., Moro, G. and Nordio, P. L. (1988) Molec. Phys., 63, 225. Moro, G. J., Ferrarini, A., Polimeno, A. and Nordio, P. L. (1989) Reactive and Flexible Molecules in Liquids, Th. Dorfmüller (ed.), Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  31. Moro, G. (1987) Chem. Phys., 118 181.

    Article  ADS  Google Scholar 

  32. Emsley, J. W., Luckhurst, G. R. and Stockley, C. P. (1982) Proc. R. Soc. A 381 117.

    Article  ADS  Google Scholar 

  33. Ryckaert, J. P. and Bellemans, A. (1975) Chem. Phys. Letts, 30 123.

    Article  ADS  Google Scholar 

  34. Flory, P. J. (1969) Statistical Mechanics of Chain Molecules, Interscience, New York.

    Google Scholar 

  35. Counsell, C. R. J., Emsley, J. W., Luckhurst, G. R., Turner, D. L. and Charvolin, J. (1984) Molec. Phys., 52 499.

    Article  ADS  Google Scholar 

  36. Ferrarini, A., Nordio, P. L., Moro, G. J., Crepeau, R. H. and Freed, J. H. (1988) J. chem. Phys., 91 5707.

    Article  ADS  Google Scholar 

  37. Ferrarini, A., Moro, G., Nordio, P. L. and Polimeno, P. L. (1988) Chem. Phys. Letters, 151 531.

    Article  ADS  Google Scholar 

  38. Happel, J. and Brenner, H. (1965) Low Reynolds Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  39. Pastor, R. W., Venable, R. M. and Karplus, M. (1988) J. chem. Phys., 89 1112.

    Article  ADS  Google Scholar 

  40. Pastor, R. W., Venable, R. M., Karplus, M. and Szabo, A. (1988) J. chem. Phys., 89 1128.

    Article  ADS  Google Scholar 

  41. Moro, G. J., Nordio, P. L. and Polimeno, A. (1989) Molec. Phys., 68 1131.

    Article  ADS  Google Scholar 

  42. van der Zwan, G. and Hynes, J. T. (1985) J. phys. Chem., 89 4181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferrarini, A., Nordio, P.L., Moro, G.J. (1994). Diffusion Models for Molecular Motion in Uniaxial Mesophases. In: Luckhurst, G.R., Veracini, C.A. (eds) The Molecular Dynamics of Liquid Crystals. NATO ASI Series, vol 431. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1168-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1168-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4509-4

  • Online ISBN: 978-94-011-1168-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics