Application of Probabilistic Approaches In Geotechnical Engineering and Engineering Geology

Part of the NATO ASI Series book series (NSSE, volume 269)


Typical geotechnical and engineering geology problems such as performance prediction of jointed rock slopes, tunnel cost and time prediction and landslide assessment and mitigation are used to illustrate the effect of uncertainties and how to handle them with probabilistic methods. This is done by discussing the typical steps in decision making under uncertainty, namely information collection, modelling, updating and decisions. Emphasis is put on the fact that both objective and subjective methods in collecting information and modelling are applicable.


Uncertainty Decision Making Information Collection Modelling Updating Objective and Subjective Probabilistic Methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baecher, G.B. (1982) Playing the odds in rock mechanics, Proc. 23rd U.S. Symp. on Rock Mechanics.Google Scholar
  2. Baecher, G.B. Lanney, N.A. and Einstein, H.H. (1977) Statistical description of rock properties and sampling, Proceedings of the 18th U.S. Symposium on Rock Mechanics 5C1-8.Google Scholar
  3. Barton, C.C. Larson, E. (1981) Fractal geometry of two-dimensional fracture networks at Yucca Mountain, Southwest Nevada. Proceedings Int’l. Symp. Fundamental of Rock Joints (ed O. Stephanson).Google Scholar
  4. Bonnard, C. Noverraz, F. (1984) Instability risk maps. From detection to the administration of landslide prone areas. Int’l. Symp. on Landslides Toronto, Vol. 2, pp. 511–522.Google Scholar
  5. Brabb, E.E. (1984) Innovative approaches to landslide hazard and risk mapping. IVth Int’l. Symp. on Landslides. Toronto, Vol. 1, pp. 307–323.Google Scholar
  6. Brown, R.S. Scholtz, C.H. (1985) Broad bandwith study of the topography of natural rock surfaces. J. of Geophys. Research, 90(B14), 575–582.Google Scholar
  7. Carpenter, J.H. (1984) Landslide risk along Lake Roosevelt. Master’s Thesis, Massachusetts Institute of Tech., Cambridge, MA 125 pp.Google Scholar
  8. Carrara, A. (1984) Landslide hazard mapping: aims and methods. Mouvements de Terrains. Association Française de Géographie Physique. Colloque de CAEN, pp. 1142-151.Google Scholar
  9. Carrara, A. Publiese-Carratelli, E. Merenda, L. (1977) Computer based data bank and Statistical analysis of slope instability phenomena. Z geomorph. N.F. 21, No. 2, 187–222.Google Scholar
  10. Dershowitz, W.S. (1984) Rock joint systems. Ph.D. Dissertation, Massachusetts Institute of Tech., Cambridge, MA.Google Scholar
  11. Dershowitz, W.S. (1993) Geometric conceptual models for fractured rock massesilmplicating for groundwater flow and rock deformation, Proc. EUROCK-93.Google Scholar
  12. DUTI (1985) Détection et Utilisation des Terains Instables. Rapport Final. Ecole Polytechnique Fédérale de Lausanne, Switzerland.Google Scholar
  13. Einstein, H.H. Labreche, D.A. Markow, M.J. Baecher, G.B. (1978) Decision analysis applied to rock tunnel exploration, Eng. Geology. 12, 143–161.CrossRefGoogle Scholar
  14. Einstein, H.H. (1988) Landslide risk assessment procedure. Proceedings 5th Int’l. Symp. on Landslides.Google Scholar
  15. Einstein, H.H. Baecher, G.B. (1982) Probabilistic and Statistical methods in engineering geology, I. Problem statement and introduction to solution. Rock Mechanics. Suppl. 12, pp. 47–61.Google Scholar
  16. Einstein, H.H. Baecher, G.B. Veneziano, D. O’Reilly, K.P. (1983) The effect of discontinuity persistence on rock slope stability. Int’l. J. of Rock Mechanics and Mining Sciences., 20, No. 5.Google Scholar
  17. Einstein, H.H. Baecher, G.B. Veneziano, D.V. (1988). Quantitative exploration planning, NAGRA Report, IB 88-61.Google Scholar
  18. Einstein, H.H. Salazar, G.F. Kim, Y.N. Ioannou, P.S. (1987) Computer based decision support systems in underground construction, Proceedings, RETC.Google Scholar
  19. Einstein, H.H. Dudt, J.P. Halabe, V.B. Descoeudres, F. (1992) Decision aids for tunneling, Monograph by Swiss Federal Office of Transportation.Google Scholar
  20. Einstein, H.H. Lee, J.-S. (1992) Topological slope stability analysis using a stochastic fracture geometry model, Proceedings Fractured and Jointed Rock Masses Conference.Google Scholar
  21. Glynn, E.F. (1979) A probabilistic approach to the stability of rock slopes. Ph.D. Dissertation, Massachusetts Institute of Tech., Cambridge, MA.Google Scholar
  22. Hasover, A.M. Lind, N.C. (1974) Exact and invariant second moment code format, J. of Eng. MEchanics, ASCE, 100, No. EMI.Google Scholar
  23. Humbert, M. (1977) La cartographie ZERMOS. Modalités et établissement des cartes des zones exposées à des risques liés aux mouvements du sol et du sous-sol. Bulletin du B.R.G.M. (deuxième série) Section III, No. 1/2, pp. 5–8.Google Scholar
  24. Iwano, M. (1992) Interim Ph.D. Thesis Presentation., Massachusetts Institute of Tech., Cambridge, MA.Google Scholar
  25. Jones, F.O. (1961) Landslides along the Columbia River valley, Northeastern Washington. U.S. Geological Survey Professional Paper 367, U.S. Government Printing Office, Washington, D.C..Google Scholar
  26. Kim Y. Einstein, H.H. Logcher, R.D. (1985) Decision support system for tunneling, ASCE Fall Convention.Google Scholar
  27. LaPointe, P.R. Barton, C.C. (1992) Shortcourse on fractals in connection with 33rd U.S. Symp. on Rock Mechanics. Sta Fe.Google Scholar
  28. Lee, J.S. Veneziano, D. Einstein, H.H. (1990) Hierarchical fracture trace model. Proc. 31st. U.S. Symp. on Rock Mechanics.Google Scholar
  29. Long, J.C.S. Bilaux, D. Hestir, K. Chiles, J.-P. (1987) Some geostatistical tools for incorporating spatial structure in fracture network modelling. Proc. 6th Int’l. Congress of the ISRM. 171-176.Google Scholar
  30. LPC (1978) Eboulements et chutes de pierres sur les routes. Méthode de Cartographie. Groupe d’Etudes des Falaises (GEF) Laboratoire Central des Ponts et Chaussées. Rapport de Recherche LPC, No. 80.Google Scholar
  31. Odling, N. (1993) Personal Communication.Google Scholar
  32. Peck, R.B. (1969) Advantages and limitations of the observational method in applied soil mechanics, 9th Rankine lecture, Géotechnique, Vol. 19, pp. 171–187.CrossRefGoogle Scholar
  33. PER (1985a) Catalogue de mesures de prévention, Mouvements de Terrains. Plan d’exposition aux risques. Premier Ministre-Délégation aux risques majeurs. 443 p.Google Scholar
  34. PER (1985b) Mise en oeuvre des plans d’exposition aux risques naturels prévisibles. Rapport administratif et technique provisoire. Premier Ministre-Délégation aux risques majeurs. 443 p.Google Scholar
  35. Raiffa, H. (1964) Applied Statistical Decision Theory. Harvard Business School, Cambridge, MA.Google Scholar
  36. Reyes, O. (1991) Experimental study and analytical modelling of fracture coalescence in brittle materials. Ph. D. Thesis, Massachusetts Institute of Tech., Cambridge, MA.Google Scholar
  37. Roberds, W.D. (1979) Numerical modelling of jointed rock. Sc.D. Thesis, Massachusetts Institute of Tech., Cambridge, MA.Google Scholar
  38. Roberds, W.D. Iwano, M. Einstein,H.H. (1990) Probabilistic mapping of rock joint surfaces. Proc. of the Int’l. Symp. on Rock Joints, Loen.Google Scholar
  39. Rollin, F. (1979) The updating of information during tunnel construction. Master’s Thesis, Massachusetts Institute of Tech., Cambridge, MA.Google Scholar
  40. Terzaghi, K. (1961) Past and future of applied soil mechanics. J. of the BSCE, April.Google Scholar
  41. Vanmarcke, E.H. Bohnenblust, H. (1982) Methodology for integrated risk assessment for dams. MIT Research Report, R-82-11.Google Scholar
  42. Varnes, D.J. (1984) Landslide hazard zonation; a review of principles and practice. Natural Hazards 3. UNESCO, 63 pp.Google Scholar
  43. Veneziano, D. (1979) Probabilistic model of joints in rock. Internal Report,M.I.T..Google Scholar
  44. Xiaomeng, Y. (1993) Stochastic modelling of rock fracture geometry. Master’s Thesis, Massachusetts Institute of Tech., Cambridge, MA.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations