Skip to main content

Genetic Defects in Lipoprotein Metabolism

  • Chapter
Genetic factors in coronary heart disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 156))

Abstract

The genetic defects of lipoprotein metabolism give rise to a group of syndromes that are most frequently classified according to abnormal concentrations of one or more of the major classes of lipoproteins in plasma (chylomicrons, VLDL, LDL or HDL), e.g. hyperchylomicronaemia, also known as Type I or V, hyperLDL (or hyper-β) lipoproteinaemia, also known as Type II, etc. The advantages of this nosology are that:

  1. 1.

    Its principles are easy to grasp and hence to explain,

  2. 2.

    Clinical laboratories are able to report abnormal concentrations in plasma because the laboratory measurements are relatively simple, subject to quality control and widely available, and

  3. 3.

    Current diet and drug therapies are based primarily on this classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schonfeld G. Inherited disorders of lipid transport. Endocrinol Metab Clin N Am. 1990;19:229–57.

    CAS  Google Scholar 

  2. Hussain MM, Maxfield FR, Masoliva J, et al. Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha-2-macroglobulin receptor. J Biol Chem. 1991;266:13936–40.

    PubMed  CAS  Google Scholar 

  3. Wetterau JR, Aggerbeck LP, Bouma M-E, et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science. 1992;258:999–1001.

    Article  PubMed  CAS  Google Scholar 

  4. Farese RV, Linton MF, Young SG. Apolipoprotein-B gene mutations affecting cholesterol levels. J Int Med. 1992;231:643–52.

    Article  CAS  Google Scholar 

  5. Groenewegen WA, Krul ES, Schonfeld G. The apolipoprotein B-52 mutation associated with hypobetalipoproteinemia is compatible with a misaligned pairing deletion mechanism. J Lipid Res. 1993;34:971–81.

    PubMed  CAS  Google Scholar 

  6. Soria LF, Ludwig EH, Clarke HRG, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA. 1989;86:587–91.

    Article  PubMed  CAS  Google Scholar 

  7. Ladias JAA, Kwiterovich POJ, Smith HH, et al. Apolipoprotein B-100 Hopkins (argi-nine4019 → tryptophan). A new apolipoprotein B-100 variant in a family with premature atherosclerosis and hyperapobetalipoproteinemia. J Am Med Assoc. 1989;262:1980–8.

    Article  CAS  Google Scholar 

  8. Fojo SS, de Gennes JL, Chapman J, et al. An initiation codon mutant in the ApoC-II gene (ApoC-IIParis) of a patient with a deficiency of apolipoprotein C-II. J Biol Chem. 1989;264:839–42.

    Google Scholar 

  9. Parrott CL, Alsayed N, Rebourcet R, Santamarinafojo S. ApoC-IIParis2: A premature termination mutation in the signal peptide of ApoC-II resulting in the familial chylomicron-emia syndrome. J Lipid Res. 1992;33:361–7.

    PubMed  CAS  Google Scholar 

  10. Fojo SS, Beisiegel U, Beil U, et al. Donor splice site mutation in the apolipoprotein (Apo) C-II gene (Apo C-IIHamburg) of a patient with ApoCII deficiency. J Clin Invest. 1988;82:1489–94.

    Article  PubMed  CAS  Google Scholar 

  11. Xiong W, Li W-H, Posner I, et al. No severe bottleneck during human evolution: Evidence from two apolipoprotein C-II deficiency alleles. Am J Hum Genet. 1991;48:383–9.

    PubMed  CAS  Google Scholar 

  12. Fojo SS, Stalenhoef AF, Marr K, Gregg RE, Ross RS, Brewer HBJ. A deletion mutation in the apoC-II gene (ApoC-IINijmegen) of a patient with a deficiency of apolipoprotein C-II. J Biol Chem. 1988;263:7913–16.

    Google Scholar 

  13. Hegele RA, Connelly PW, Maguire GF, et al. An apolipoprotein CII mutation, CIILys19Thr, identified in patients with hyperlipidemia. Dis Markers. 1991;9:73–80.

    PubMed  CAS  Google Scholar 

  14. Menke-Möllers I, Kurth J, Oette K. Studies on an apolipoprotein-C-II variant occurring in Caucasians. Electrophoresis. 1992;13:244–51.

    Article  PubMed  Google Scholar 

  15. Fojo SS, Lohse P, Parrot C, et al. A nonsense mutation in the apolipoprotein C-IIPadova gene in a patient with apolipoprotein C-II deficiency. J Clin Invest. 1989;84:1215–19.

    Article  PubMed  CAS  Google Scholar 

  16. Crecchio C, Capurso A, Pepe G. Identification of the mutation responsible for a case of plasmatic apolipoprotein CII deficiency (ApoCII-Bari). Biochem Biophys Res Commun. 1990;168:1118–27.

    Article  PubMed  CAS  Google Scholar 

  17. Menzel H-J, Kane JP, Malloy MJ, Havel RJ. A variant primary structure of apolipoprotein C-II in individuals of African descent. J Clin Invest. 1986;77:595–601.

    Article  PubMed  CAS  Google Scholar 

  18. Connelly PW, Maguire GF, Hofmann T, Little JA. Structure of apolipoprotein C-IIToronto, a nonfunctional human apolipoprotein. Proc Natl Acad Sci USA. 1987;74:270–3.

    Article  Google Scholar 

  19. Cox DW, Wills DE, Quan F, Ray PN. A deletion of one nucleotide results in functional deficiency of apolipoprotein CII (apoCII Toronto). J Med Genet. 1988;25:649–52.

    Article  PubMed  CAS  Google Scholar 

  20. Connelly PW, Maguire GF, Little JA. Apolipoprotein CIIst Michael apolipoprotein CII deficiency associated with premature vascular disease. J Clin Invest. 1987;80:1597–606.

    Article  PubMed  CAS  Google Scholar 

  21. Gotoda T, Yamada N, Kawamura M, et al. Heterogeneous mutations in the human lipoprotein lipase gene in patients with familial lipoprotein lipase deficiency. J Clin Invest. 1991;88 56–64.

    Article  Google Scholar 

  22. Hata A, Emi M, Luc G, et al. Compound heterozygote for lipoprotein lipase deficiency-Ser → Thr244 and transition in 3′ splice site of intron-2 (Ag → AA) in the lipoprotein lipase gene. Am J Hum Genet. 1990;47:721–6.

    PubMed  CAS  Google Scholar 

  23. Langlois S, Deeb S, Brunzell JD, Kastelein JJ, Hayden MR. A major insertion accounts for a significant proportion of mutations underlying human lipoprotein-lipase deficiency. Proc Natl Acad Sci USA. 1989;86:948–52.

    Article  PubMed  CAS  Google Scholar 

  24. Devlin RH, Deeb S, Brunzell J, Hyden MR. Partial gene duplication involving Exon-Alu interchange results in lipoprotein lipase deficiency. Am J Hum Genet. 1990;46:112–19.

    PubMed  CAS  Google Scholar 

  25. Sprecher DL, Kobayashi J, Rymaszewski M, et al. TRP64 → nonsense mutation in the lipoprotein lipase gene. J Lipid Res. 1992;33:859–66.

    PubMed  CAS  Google Scholar 

  26. Ishimura-Oka K, Faustinella F, Kihara S, Smith LC, Oka K, Chan L. A missense mutation (Trp86 → Arg) in exon-3 of the lipoprotein lipase gene: A cause of familial chylomicronemia. Am J Hum Genet. 1992;50:1275–80.

    PubMed  CAS  Google Scholar 

  27. Henderson HE, Devlin R, Peterson J, Brunzell JD, Hayden MR. Frameshift mutation in exon-3 of the lipoprotein lipase gene causes a premature stop codon and lipoprotein lipase deficiency. Mol Biol Med. 1990;7:511–17.

    PubMed  CAS  Google Scholar 

  28. Emi M, Hata A, Robertson M, Iverius PH, Hegele R, Lalouel JM. Lipoprotein lipase deficiency resulting from a nonsense mutation in exon-3 of the lipoprotein lipase gene. Am J Hum Genet. 1990;47:107–11.

    PubMed  CAS  Google Scholar 

  29. Ameis D, Kobayashi J, Davis RC, et al. Familial chylomicronemia (type-I hyperlipoproteinemia) due to a single missense mutation in the lipoprotein lipase gene. J Clin Invest. 1991;87:1165–70.

    Article  PubMed  CAS  Google Scholar 

  30. Faustinella F, Chang A, Vanbiervliet JP, et al. Catalytic triad residue mutation (Asp156 → Fly) causing familial lipoprotein lipase deficiency — coinheritance with a nonsense mutation (Ser447 → Ter) in a Turkish family. J Biol Chem. 1991;266:14418–24.

    PubMed  CAS  Google Scholar 

  31. Bruin T, Kastelein JJP, Vandiermen DE, et al. A missense mutation Pro157 → Arg in lipoprotein lipase (LPLNijmegen) resulting in loss of catalytic activity. Eur J Biochem. 1992;208:267–72.

    Article  PubMed  CAS  Google Scholar 

  32. Beg OU, Meng MS, Skarlatos SI, et al. Lipoprotein lipaseBethesda: A single amino acid substitution (Ala-176 → Thr) leads to abnormal heparin binding and loss of enzymic activity. Proc Natl Acad Sci USA. 1990;87:3474–8.

    Article  PubMed  CAS  Google Scholar 

  33. Emi M, Wilson DE, Iverius PH, et al. Missense mutation (Gly → Glu188) of human lipoprotein lipase imparting functional deficiency. J Biol Chem. 1990;265:5910–16.

    PubMed  CAS  Google Scholar 

  34. Monsalve MV, Henderson H, Roederer G, et al. A missense mutation at codon-188 of the human lipoprotein lipase gene is a frequent cause of lipoprotein lipase deficiency in persons of different ancestries. J Clin Invest. 1990;86:728–34.

    Article  PubMed  CAS  Google Scholar 

  35. Paulweber B, Wiebusch H, Miesenboeck G, et al. Molecular basis of lipoprotein lipase deficiency in two Austrian families with type-I hyperlipoproteinemia. Atherosclerosis. 1991;86:239–50.

    Article  PubMed  CAS  Google Scholar 

  36. Henderson HE, Hassan F, Berger GMB, Hayden MR. The lipoprotein lipase Gly188 → Glu mutation in South Africans of Indian descent — evidence suggesting common origins and an increased frequency. J Med Genet. 1992;29:119–22.

    Article  PubMed  CAS  Google Scholar 

  37. Dichek HL, Fojo SS, Beg OU, et al. Identification of two separate allelic mutations in the lipoprotein lipase gene of a patient with the familial hyperchylomicronemia syndrome. J Biol Chem. 1991;266:473–7.

    PubMed  CAS  Google Scholar 

  38. Ma YH, Henderson HE, Venmurthy MR, et al. A mutation in the human lipoprotein lipase gene as the most common cause of familial chylomicronemia in French Canadians. N Engl J Med. 1991;324:1761–6.

    Article  PubMed  CAS  Google Scholar 

  39. Takagi A, Ikeda Y, Tsutsumi Z, Shoji T, Yamamoto A. Molecular studies on primary lipoprotein lipase (LPL) deficiency — one base deletion (G916) in exon-5 of LPL gene causes no detectable LPL protein due to the absence of LPL messenger RNA transcript. J Clin Invest. 1992;89:581–91.

    Article  PubMed  CAS  Google Scholar 

  40. Gotoda T, Yamada N, Murase T, et al. A newly identified null allelic mutation in the human lipoprotein lipase (LPL) gene of a compound heterozygote with familial LPL deficiency. Biochim Biophys Acta. 1992;1138:353–6.

    Article  PubMed  CAS  Google Scholar 

  41. Ma YH, Wilson BI, Bijvoet S, et al. A missense mutation (Asp250 → Asn) in exon-6 of the human lipoprotein lipase gene causes chylomicronemia in patients of different ancestries. Genomics. 1992;13:649–53.

    Article  PubMed  CAS  Google Scholar 

  42. Ishimura-Oka K, Semenkovich CF, Faustinella F, et al. A missense (Asp250 → Asn) mutation in the lipoprotein lipase gene in 2 unrelated families with familial lipoprotein lipase deficiency. J Lipid Res. 1992;33:745–54.

    PubMed  CAS  Google Scholar 

  43. Hata A, Robertson M, Emi M, Lalouel J-M. Direct detection and automated sequencing of individual alleles after electrophoretic strand separation: Identification of a common nonsense mutation in exon 9 of the human lipoprotein lipase gene. Nucl Acid Res. 1990;18:5407–11.

    Article  CAS  Google Scholar 

  44. Stocks J, Thorn JA, Galton DJ. Lipoprotein lipase genotypes for a common premature termination codon mutation detected by PCR-mediated site-directed mutagenesis and restriction digestion. J Lipid Res. 1992;33:853–7.

    PubMed  CAS  Google Scholar 

  45. Brunzell JD, Peterson J, Deeb SS, et al. Familial lipoprotein lipase deficiency. In: Stein O, Eisenberg S, Stein Y, eds. Atherosclerosis IX: Proceedings of the Ninth International Symposium on Atherosclerosis. Tel Aviv: R&L Creative Communications Ltd; 1992:271–3.

    Google Scholar 

  46. Hegele RA, Tu L, Connelly PW. Human hepatic lipase mutations and polymorphisms. Hum Mutat. 1992;1:320–4.

    Article  PubMed  CAS  Google Scholar 

  47. Hegele RA, Little JA, Connelly PW. Compound heterozygosity for mutant hepatic lipase in familial hepatic lipase deficiency. Biochem Biophys Res Commun. 1991;179:78–84.

    Article  PubMed  CAS  Google Scholar 

  48. Reina M, Deeb S. SSCP polymorphism in the human hepatic triglyceride lipase (LIPC) gene. Hum Mol Genet. 1992;1:453.

    Article  PubMed  CAS  Google Scholar 

  49. Hegele RA, Vezina C, Moorjani S, et al. A hepatic lipase gene mutation associated with heritable lipolytic deficiency. J Clin Endocrinol Metab. 1991;72:730–2.

    Article  PubMed  CAS  Google Scholar 

  50. von Eckardstein A, Funke H, Henke A, et al. Apolipoprotein A-I variants. Naturally occurring substitutions of proline residues affect plasma concentration of apolipoprotein A-I. J Clin Invest. 1989;84:1722–30.

    Article  Google Scholar 

  51. Menzel H-G, Assmann G, Rall SC, Weisgraber KH, Mahley RW. Human apolipoprotein A-I polymorphism: Identification of amino acid substitutions in three electrophoretic variants of the Münster-3-type. J Biol Chem. 1984;259:3070–6.

    PubMed  CAS  Google Scholar 

  52. Ladias JAA, Kwiterovich PO, Smith HH, Karathanasis SK, Antonarakis SE. Apolipoprotein-A1Baltimore (Arg10 → Leu), a new apoA1 variant. Hum Genet. 1990;84:439–45.

    Article  PubMed  CAS  Google Scholar 

  53. Nichols WC, Gregg RE, Brewer HB, Benson MD. A mutation in apolipoprotein-A1 in the Iowa type of familial amyloidotic polyneuropathy. Genomics. 1990;8:318–23.

    Article  PubMed  CAS  Google Scholar 

  54. Rader DJ, Gregg RE, Meng MS, et al. In vivo metabolism of a mutant apolipoprotein, apoA-IIowa, associated with hypoalphalipoproteinemia and hereditary systemic amyloidosis. J Lipid Res. 1992;33:755–63.

    PubMed  CAS  Google Scholar 

  55. Soutar AK, Hawkins PN, Vigushin DM, et al. Apolipoprotein A1 mutation Arg60 causes autosomal dominant amyloidosis. Proc Natl Acad Sci USA. 1992;89:7389–93.

    Article  PubMed  CAS  Google Scholar 

  56. Matsunaga T, Hiasa Y, Yanagi H, et al. Apolipoprotein-A1 deficiency due to a codon-84 nonsense mutation of the apolipoprotein-A1 gene. Proc Natl Acad Sci USA. 1991;88:2793–7.

    Article  PubMed  CAS  Google Scholar 

  57. von Eckardstein A, Funke H, Walter M, Altland K, Benninghoven A, Assmann G. Structural analysis of human apolipoprotein A1 variants. Amino acid substitions are nonrandomly distributed throughout the apolipoprotein A1 primary structure. J Biol Chem. 1990;265:8610–17.

    Google Scholar 

  58. Rall Jr SC, Weisgraber KH, Mahley RW, et al. Abnormal lecithinxholesterol acyltransferase activation by a human apolipoprotein A1 variant in which a single lysine residue is deleted. J Biol Chem. 1984;259:10063–70.

    PubMed  CAS  Google Scholar 

  59. Takada Y, Sasaki J, Ogata S, Nakanishi T, Ikerhara Y, Arakawa K. Isolation and characterization of human apolipoprotei-A1Fukuoka (Glu110 → Lys) — a novel apolipoprotein variant. Biochim Biophys Acta. 1990;1043:169–76.

    Article  PubMed  CAS  Google Scholar 

  60. Mahley RW, Innerarty TL, Rall SCJ, Weisgraber KH. Plasma lipoproteins, apolipoprotein structure and function. J Lipid Res. 1984;25:1277–94.

    PubMed  CAS  Google Scholar 

  61. Utermann G, Haas J, Steinmetz A, et al. Apolipoprotein A1Giessen (Pro143 → Arg). A mutant that is defective in activating lecithin:cholesterol acyltransferase. Eur J Biochem. 1984;144:325–31.

    Article  PubMed  CAS  Google Scholar 

  62. Deeb SS, Cheung MC, Peng R, et al. A mutation in the human apolipoprotein-A1 gene-dominant effect on the level and characteristics of plasma high density lipoproteins. J Biol Chem. 19991;266:13654–60.

    Google Scholar 

  63. Weisgraber KH, Rall SC, Bersot TP, Mahley RW, Franceschini G, Sirtori C. Apolipoprotein A-IMilano. Detection of normal A-1 in affected subjects and evidence for a cysteine for arginine substitution in the variant A-I. J Biol Chem. 1983;258:2508–13.

    PubMed  CAS  Google Scholar 

  64. Jabs H-U, Assmann G, Greifendorf D, Benninghoven A. High performance liquid chromatography and time-of-flight secondary ion mass spectrometry: a new dimension in structural analysis of apolipoproteins. J Lipid Res. 1986;27:613–21.

    PubMed  CAS  Google Scholar 

  65. Strobl W, Jabs H-U, Hayde M, Holzinger T, Assmann G, Widhalm K. Apolipoprotein A-1 (Glu198 → Lys): A mutant of the major apolipoprotein of high density lipoproteins occurring in a family with dyslipoproteinemia. Pediatr Res. 1988;244:222–8.

    Article  Google Scholar 

  66. Funke H, von Eckardstein A, Pritchard PH, et al. A frameshift mutation in the human apolipoprotein-A1 gene causes high density lipoprotein deficiency, partial lecithin-cholesterol-acyltransferase deficiency, and corneal opacities. J Clin Invest. 1991;87:371–6.

    Article  PubMed  CAS  Google Scholar 

  67. Norum RA, Lakier JB, Goldstein S, et al. Familial deficiency of apolipoproteins A-1 and C-III and precocious coronary artery disease. N Engl J Med. 1982;306:1513–19.

    Article  PubMed  CAS  Google Scholar 

  68. Karathanasis SK, Ferris E, Haddad IA. DNA inversion within the apolipoproteins AI/CIII/AIV encoding gene cluster of certain patients with premature atherosclerosis. Proc Natl Acad Sci USA. 1987;84:7198–202.

    Article  PubMed  CAS  Google Scholar 

  69. Schaefer EJ, Ordovas JM, Law SW, et al. Familial apolipoprotein A-l and C-III deficiency, variant II. J Lipid Res. 1985;26:1089–101.

    PubMed  CAS  Google Scholar 

  70. Ordovas JM, Cassidy DK, Civeira F, Bisgaier CL, Schaefer EJ. Familial apolipoprotein A-1, C-III, and A-IV deficiency and premature atherosclerosis due to deletion of a gene complex on chromosome 11. J Biol Chem. 1989;264:6339–42.

    Google Scholar 

  71. Deeb SS, Takata K, Peng R, Kajiyama G, Albers JJ. A splice-junction mutation responsible for familial apolipoprotein AII deficiency. Am J Hum Genet. 1990;46:822–7.

    PubMed  CAS  Google Scholar 

  72. von Eckardstein A, Holz H, Sandkamp M, Weng W, Funke H, Assmann G. Apolipoprotein-CIII (Lys58 → Glu): Identification of an apolipoprotein-CIII variant in a family with hyperalphalipoproteinemia. J Clin Invest. 1991;87:1724–31.

    Article  Google Scholar 

  73. Maeda HH, Hashimoto RK, Ogura T, Hiraga S, Uzawa H. Molecular cloning of a human apo CIII variant: Thr74 → Ala74 mutation prevents o-glycosylation. J Lipid Res. 1987;28:1405–9.

    PubMed  CAS  Google Scholar 

  74. Brown ML, Inazu A, Hesler C, et al. Molecular basis of lipid transfer protein deficiency in a family with increased high density lipoproteins. Nature. 1989;342:448–51.

    Article  PubMed  CAS  Google Scholar 

  75. Bisgaier CL, Siebenkas MV, Brown ML, et al. Familial cholesteryl ester transfer protein deficiency is associated with triglyceride-rich low density lipoproteins containing cholesteryl esters of probable intracellular origin. J Lipid Res. 1991;32:21–33.

    PubMed  CAS  Google Scholar 

  76. Kamboh MI, Hamman RF, Ferrell RE. Two common polymorphisms in the Apo A-IV coding gene: Their evolution and linkage disequilibrium. Gen Epidem. 1992;9:305–15.

    Article  CAS  Google Scholar 

  77. Lohse P, Kindt MR, Rader DJ, Brewer HB. Three genetic variants of human plasma apolipoprotein-AIV — apoA-IV-1 (Thr347 → Ser), apoA-IV-0 (Lys167 → Glu, Gln360 → His), and apo-A-IV-3 (Glu165 → Lys). J Biol Chem. 1991;13513–18.

    Google Scholar 

  78. Lohse P, Kindt MR, Rader DJ, Brewer HB. Genetic polymorphism of human plasma apolipoprotein-AIV is due to nucleotide substitutions in the apolipoprotein-AIV gene. J Biol Chem. 1990;265:10061–4.

    PubMed  CAS  Google Scholar 

  79. Tenkanen H, Lukka M, Jauhiainen M, et al. The mutation causing the common apolipoprotein AIV polymorphism is a glutamine to histidine substitution of amino acid-360. Arterioscler Thromb. 1991;11:851–6.

    Article  PubMed  CAS  Google Scholar 

  80. Hixson JE, Powers PK. Restriction isotyping of human apolipoprotein-AIV — rapid typing of known isoforms and detection of a new isoform that deletes a conserved repeat. J Lipid Res. 1991;32:1529–35.

    PubMed  CAS  Google Scholar 

  81. Lohse P, Kindt MR, Rader DJ, Brewer HB. Human plasma apolipoprotein-AIV-0 and apolipoprotein-AIV-3 — molecular basis for 2 rare variants of apolipoprotein-AIV-1. J Biol Chem. 1990;265:12734–9.

    PubMed  CAS  Google Scholar 

  82. Stalenhoef AFH, Casparie AF, Demacker PNM, et al. Combined deficiency of apolipopro-tein C-II and lipoprotein lipase in familial hyperchylomicronemia. Metabolism. 1981;30:919–26.

    Article  PubMed  CAS  Google Scholar 

  83. Brunzell JD, Albers JJ, Chait A, et al. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res. 1983;24:147–55.

    PubMed  CAS  Google Scholar 

  84. Babirak SP, Iverius PH, Fujimoto WY, Brunzell JD. Detection and characterization of the heterozygous state for lipoprotein lipase deficiency. Arteriosclerosis. 1989;9:326–34.

    Article  PubMed  CAS  Google Scholar 

  85. Kwiterovich PO. Biochemical, clinical, genetic and metabolic studies of hyperapo-β-lipoproteinemia. J Inher Metab Dis (Suppl.II). 1988;57:57–73.

    Article  Google Scholar 

  86. Demant T, Houlston RS, Caslake MJ, et al. Catabolic rate of low density is influenced by variation in the apolipoprotein B gene. J Clin Invest. 1988;82:797–802.

    Article  PubMed  CAS  Google Scholar 

  87. Brunzell JD, Iverius PH, Scheibel MS, et al. Primary lipoprotein lipase deficiency. Adv Med Biol. 1986;201:227–30.

    CAS  Google Scholar 

  88. Lackner KJ, Monge JC, Gregg RE, et al. Analysis of the apolipoprotein B gene and messenger ribonucleic acid in abetalipoproteinemia. J Clin Invest. 1986;78:1707–12.

    Article  PubMed  CAS  Google Scholar 

  89. Ross RS, Gregg RE, Law SW, et al. Homozygous hypobetalipoproteinemia: A disease distinct from abetalipoproteinemia at the molecular level. J Clin Invest. 1988;81:590–5.

    Article  PubMed  CAS  Google Scholar 

  90. Krul ES, Konishita M, Talmud P, et al. Two distinct truncated apolipoprotein B species in a kindred with hypobetalipoproteinemia. Arteriosclerosis. 1989;9:856–68.

    Article  PubMed  CAS  Google Scholar 

  91. Huang LS, Kayden H, Sokol RJ, Breslow JL. ApoB gene nonsense and splicing mutations in a compound heterozygote for familial hypobetalipoproteinemia. J Lipid Res. 1991;32:1341–8.

    PubMed  CAS  Google Scholar 

  92. Hardman DA, Pullinger CR, Hamilton RL, Kane JP, Malloy MJ. Molecular and metabolic basis for the metabolic disorder normotriglyceridemic abetalipoproteinemia. J Clin Invest. 1991;88:1722–9.

    Article  PubMed  CAS  Google Scholar 

  93. Krul ES, Tang J, Kettler TS, Clouse RE, Schonfeld G. Lengths of truncated forms of apolipoprotein B (apoB) determine their intestinal production. Biochem Biophys Res Commun. 1992;189:1069–76.

    Article  PubMed  CAS  Google Scholar 

  94. Krul ES, Parhofer KG, Barrett PHR, Wagner RD, Schonfeld G. ApoB-75, a truncation of apolipoprotein-B associated with familial hypobetalipoproteinemia — genetic and kinetic studies. J Lipid Res. 1992;33:1037–50.

    PubMed  CAS  Google Scholar 

  95. Parhofer KG, Barrett PHR, Bier DM, Schonfeld G. Lipoproteins containing the truncated apolipoprotein, apo B-89, are cleared from human plasma more rapidly than apo B-100 containing lipoproteins in vivo. J Clin Invest. 1992;89:1931–7.

    Article  PubMed  CAS  Google Scholar 

  96. Frohlich J, Pritchard PH. Analysis of familial hypoalphalipoproteinemia syndromes. Mol Cell Biochem. 1992;113:141–9.

    Article  PubMed  CAS  Google Scholar 

  97. Steinmetz A, Utermann G. Activation of lecithin:cholesterol acyltransferase by human apolipoprotein AIV. J Biol Chem. 1985;260:2258–64.

    PubMed  CAS  Google Scholar 

  98. Steinmetz A, Barbaras R, Ghalim N, Clavey V, Fruchart JC, Ailhaud G. Human apolipoprotein-AIV binds to apolipoprotein-AII receptor sites and promotes cholesterol efflux from adipose cells. J Biol Chem. 1990;265:7859–63.

    PubMed  CAS  Google Scholar 

  99. Barter PJ, Rajaram OV, Chang LBF, et al. Isolation of a high density lipoprotein conversion factor from human plasma. Biochemistry. 1988;254:179–84.

    CAS  Google Scholar 

  100. Goldberg IJ, Scheraldo CA, Yacoub LK, Saxena U, Bisgaier CL. Lipoprotein apoCII activation of lipoprotein lipase — modulation by apolipoprotein-AIV. J Biol Chem. 1990;265:4266–72.

    PubMed  CAS  Google Scholar 

  101. Weinberg RB, Dantzker C, Patton CS. Sensitivity of serum apolipoprotein A-V levels to changes in dietary fat content. Gastroenterology. 1990;98:17–24.

    PubMed  CAS  Google Scholar 

  102. Fujimoto K, Cardelli JA, Tso P. Increased apolipoprotein A-IV in rat mesenteric lymph after lipid meal acts as a physiological signal for satiation. Am J Physiol. 1992;25:G1002–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schonfeld, G., Krul, E.S. (1994). Genetic Defects in Lipoprotein Metabolism. In: Goldbourt, U., de Faire, U., Berg, K. (eds) Genetic factors in coronary heart disease. Developments in Cardiovascular Medicine, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1130-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1130-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4494-3

  • Online ISBN: 978-94-011-1130-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics