Skip to main content

Genetic mapping in lettuce

  • Chapter
DNA-based markers in plants

Abstract

Cultivated lettuce (Lactuca sativa L.) is a diploid (2n = 18) species in the Cichoreae tribe of the Compositae (Asteraceae) family. There are three well-established wild species in the subsection Lactuca, L. serriola, L. saligna, and L. virosa; all are 2n = 18 and self-fertilizing. These species can be crossed to L. sativa with increasing difficulty in the order listed. Several other sexually compatible species have been described (Ferakova 1977) but their validity as distinct species remains unclear. L. serriola is closely related to L. sativa and may be conspecific (Lindqvist 1960a; Kesseli et al. 1991). These wild species, especially L. serriola, have been sources of several disease resistance genes (see below; Crute 1988); however, they remain a rich source of variation that has yet to be accessed systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

LOD:

log of the odds ratio (log of the likelihood of the data arising due to linkage over the likelihood of the data arising by chance)

NIL:

near-isogenic line

PCR:

polymerase chain reaction

QTL:

quantitative trait locus

RFLP:

restriction fragment length polymorphism

RAPD:

random amplified polymorphic DNA

SCAR:

sequence characterized amplified region

References

  • Anon. (1992) Marketing lettuce from Salinas, Watsonville, other Central California districts and Colorado, 1991. Federal State Market News Service, 28 pp.

    Google Scholar 

  • Bannerot, H., Boulidard, L., Marrou, J. and Duteil, M. (1969) Étude de l’hérédité de la tolérance au virus de la mosaique de la laitue chez la variété Gallega de Invierno. Ann. Phytopathol. 1: 219–226.

    Google Scholar 

  • Bonnier, F.J.K., Reinink, K. and Groenwold, R. (1992) A search for new sources of major gene resistance in Lactuca to Bremia lactucae Euphytica 61: 203–211.

    Article  Google Scholar 

  • Bremer, A.H. (1931) Einfluss der Tageslange auf die Wachstumsphasen des Salats. Genetische Untersuchungen I. Gartenbauwissenshaft 4: 469–483.

    Google Scholar 

  • Bremer, A.H. and Grana, J. (1935) Genetische Untersuchungen mit Salat. II. Gartenbauwissenshaft 9: 231–245.

    Google Scholar 

  • Brown, P.R. and Michelmore, R.W. (1988) The genetics of corky root resistance in lettuce. Phytopathology 78: 1145–1150.

    Article  Google Scholar 

  • Cole, R.A., Sutherland, R.A. and Riggall, W.E. (1991) The use of Polyacrylamide gel electrophoresis to identify variation in isozymes as markers for Lactuca species and resistance to the lettuce root aphid Pemphigus bursarius Euphytica 56: 237–242.

    Article  CAS  Google Scholar 

  • Crute, I.R. (1988) The impact of breeding on pest and disease control in lettuce. Aspects Appl. Biol. 17: 305–312.

    Google Scholar 

  • Crute, I.R. and Johnson, A.G. (1976) The genetic relationship between races of Bremia lactucae and cultivars of Lactuca sativa Ann. Appl. Biol. 83: 125–137.

    Article  Google Scholar 

  • Crute, I.R. and Norwood, J.M. (1981) The identification and characterisitics of field resistance to lettuce downy mildew (Bremia lactucae Regel). Euphytica 30: 707–717.

    Article  Google Scholar 

  • Durst, C.E. (1929) Inheritance in lettuce. Science 69: 553–554.

    Article  PubMed  CAS  Google Scholar 

  • Durst, C.E. (1930) Inheritance in lettuce. Illinois Agric. Exp. Sta. Bull. 356: 237–341.

    Google Scholar 

  • Ernst-Schwarzenbach, M. (1936) Fertilität, Photoperiodismus, und Genetik von Lactuca sativa L. Züchter 8: 11–21.

    Google Scholar 

  • Farrara, B. and Michelmore, R.W. (1987) Identification of novel sources of downy mildew resistance in Lactuca spp. HortScience 22: 647–649.

    Google Scholar 

  • Farrara, B., Ilott, T.W. and Michelmore, R.W. (1987) Genetic analysis of factors for resistance to downy mildew (Bremia lactucae) in species of lettuce (Lactuca sativa and L. serriola) Plant Pathol. 36: 499–514.

    Article  Google Scholar 

  • Ferakova, V. (1977) The genus Lactuca L. in Europe. Univerzita Komenskeho, p. 68.

    Google Scholar 

  • Hulbert, S.H. and Michelmore, R.W. (1985) Linkage analysis of genes for resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa) Theor. Appl. Genet. 70: 520–528.

    Article  Google Scholar 

  • Ilott, T.W., Hulbert, S.H. and Michelmore, R.W. (1989) Genetic analysis of the gene-for-gene interaction between lettuce (Lactuca sativa) and Bremia lactucae Phytopathology 79: 888–897.

    Article  Google Scholar 

  • Johnson, A.G., Crute, I.R. and Gordon, P.L. (1977) The genetics of race specific resistance in lettuce to downy mildew (Bremia lactucae) Ann. Appl. Biol. 86: 87–103.

    Article  Google Scholar 

  • Johnson, A.G., Laxton, S.A., Crute, I.R., Gordon, P.L. and Norwood, J.M. (1978) Further work on the genetics of race specific resistance in lettuce (Lactuca sativa) to downy mildew (Bremia lactucae) Ann. Appl. Biol. 89: 257–264.

    Article  Google Scholar 

  • Kesseli, R.V. and Michelmore, R.W. (1986) Genetic variation and phylogenies from isozyme markers in species of Lactuca Heredity 77: 324–331.

    CAS  Google Scholar 

  • Kesseli, R.W., Paran, I. and Michelmore, R.W. (1989) Lactuca sativa In: S.J. O’Brien (ed.), Genetic Maps, 5th ed, pp. 6100–6102. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Kesseli, R.V., Ochoa, O. and Michelmore, R.W. (1991) Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce. Genome 34: 430–436.

    Article  Google Scholar 

  • Kesseli, R.V., Paran, I., Ochoa, O., Wang, W.-C. and Michelmore, R.W. (1993a) Linkage map of lettuce (Lactuca sativa) In: S.J. O’Brien (ed.), Genetic Maps, 6th ed., pp. 6229–6233. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Kesseli, R.V., Paran, I. and Michelmore, R.W. (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136: 1435–1446.

    PubMed  CAS  Google Scholar 

  • Kesseli, R.V., Witsenboer, H., Vandemark, G.J., Stangellini, M.E. and Michelmore, R.W. (1993b) Recessive resistance to Plasmopara lactucae-radicis maps by bulked segregant analysis to a cluster of dominant resistance genes in lettuce. Mol. Plant Microbe Interact. 6: 722–728.

    Article  CAS  Google Scholar 

  • Kosambi (1944) The estimation of map distance from recombination values. Ann. Eugen .12:172–175.

    Google Scholar 

  • Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newburg, L. (1987) MAPMAKER: in interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Landry, B.S., Kesseli, R.V., Farrara, B. and Michelmore, R.W. (1987b) A genetic map of lettuce (Lactuca sativa L.) with restriction fragment length polymorphism, isozyme, disease resistance and morphological markers. Genetics 116: 331–337.

    PubMed  CAS  Google Scholar 

  • Landry, B.S., Kesseli, R.V., Leung, H. and Michelmore, R.W. (1987a) Comparison of restriction endonucleases and sources of probes for their efficiency in detecting restriction fragment length polymorphisms in lettuce (Lactuca sativa) Theor. Appl. Genet. 74: 646–653.

    Article  CAS  Google Scholar 

  • Lindqvist, K. (1958) Inheritance of lobed leaf form in Lactuca Hereditas 44: 347–377.

    Article  Google Scholar 

  • Lindqvist, K. (1960a) On the origin of cultivated lettuce. Hereditas 46: 319–350.

    Article  Google Scholar 

  • Lindqvist, K. (1960b) Inheritance studies in lettuce. Hereditas 46: 387–470.

    Article  Google Scholar 

  • Maxon-Smith, J.W. (1979) Triforine sensitivity in lettuce. Euphytica 28: 351–359.

    Article  Google Scholar 

  • Michelmore, R.W., Marsh, E., Seely, S. and Landry, B.S. (1987a) Transformation of lettuce mediated by Agrobacterium tumefaciens Plant Cell Rep. 6: 439–442.

    CAS  Google Scholar 

  • Michelmore, R.W., Hulbert, S.H., Landry, B.S. and Leung, H. (1987b) Towards a molecular understanding of lettuce downy mildew. In: P.R. Day and G.J. Jellis (eds.), Genetics and Plant Pathogenesis, pp. 221–232. Blackwell Scientific, Oxford.

    Google Scholar 

  • Michelmore, R.W., Paran, I. and Kesseli, R.V. (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc. Natl. Acad. Sci. U.S.A. 88: 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Michelmore, R.W., Kesseli, R.V., Francis, D.M., Paran, I., Fortin, M.G. and Yang, C.-H. (1992) Strategies for cloning plant disease resistance genes. In: S. Gurr (ed.), Molecular Plant Pathology - A Practical Approach, Vol. 2, pp. 233–287. IRL Press, Oxford.

    Google Scholar 

  • Norwood, J.M., Crute, I.R., Johnson, A.G. and Gordon, P.L. (1983) A demonstration of the inheritance of field resistance to lettuce downy mildew (Bremia lactucae Regel) in progeny derived from cv. Grand Rapids. Euphytica 32: 161–170.

    Article  Google Scholar 

  • Norwood, J.M., Johnson, A.G., O’Brien, M. and Crute, I.R. (1985) The inheritance of field resistance to lettuce downy mildew (Bremia lactucae) in the cross ‘Avoncrisp’ × ‘Iceberg’. Z. Pflanzenzüchtung 94: 259–262.

    Google Scholar 

  • Paran, I. and Michelmore, R.W. (1993) Identification of reliable PCR-based markers linked to disease resistance genes in lettuce. Theor. Appl. Genet. 85: 085–993.

    Article  Google Scholar 

  • Paran, I., Kesseli, R.V. and Michelmore, R.W. (1991) Identification of RFLP and RAPD markers linked to downy mildew resistance genes in lettuce using near-isogenic lines. Genome 34: 1021–1027.

    Article  PubMed  CAS  Google Scholar 

  • Paran, I., Kesseli, R.V. and Michelmore, R.W. (1992) Recent amplification of triose phosphate isomerase related sequences in lettuce. Genome 35: 627–635.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, O.H. (1956) The nature of the rogue in 456 lettuce. Proc. Am. Soc. Hort. Sci. 68: 270–278.

    Google Scholar 

  • Pryor, T. (1987) Origin and structure of disease resistance genes in plants. Trends Genet. 3: 157–161.

    Article  Google Scholar 

  • Robinson, R.W., McCreight, J.D. and Ryder, E.J. (1983) The genes of lettuce and closely related species. Plant Breed. Rev. 1: 267–293.

    Article  Google Scholar 

  • Ryder, E.J. (1963a) A gene for depth of corolla cleft in the lettuce flower. Veg. Imp. Newsletter 5: 5–6.

    Google Scholar 

  • Ryder, E.J. (1963b) An epistatically controlled pollen sterile in lettuce (Lactuca sativa L.). Proc. Am. Soc. Hort. Sci. 83: 585–589.

    Google Scholar 

  • Ryder, E.J. (1965) The inheritance of five leaf characters in lettuce (Lactuca sativa L.). Proc. Am. Soc. Hort. Sci. 86: 457–461.

    Google Scholar 

  • Ryder, E.J. (1967) A recessive male sterility gene in lettuce (Lactuca sativa L.). Proc. Am. Soc. Hort. Sci. 91: 366–368.

    Google Scholar 

  • Ryder, E.J. (1970) Inheritance resistance to common lettuce mosaic. J. Am. Soc. Hort. Sci. 95: 378–379.

    Google Scholar 

  • Ryder, E.J. (1971) Genetic studies in lettuce (Lactuca sativa L.). J. Am. Soc. Hort. Sci. 96: 826–828.

    CAS  Google Scholar 

  • Ryder, E.J. (1975) Linkage and inheritance in lettuce (Lactuca sativa L.). J. Am. Soc. Hort. Sci. 100: 346–349.

    Google Scholar 

  • Ryder, E.J. (1983) Inheritance, linkage and gene interaction studies in lettuce. J. Am. Soc. Hort. Sci. 108: 985–991.

    Google Scholar 

  • Ryder, E.J. (1985) The use of early flowering genes to reduce generation time in backcrossing, with specific application to lettuce breeding. J. Am. Soc. Hort. Sci. 110: 570–573.

    Google Scholar 

  • Ryder, E.J. (1986) Lettuce breeding. In: M.J. Bassett (ed.), Breeding Vegetable Crops, pp. 433–474. AVI Publishing, Westport.

    Google Scholar 

  • Ryder, E.J. (1988) Early flowering in lettuce as influenced by a second flowering time gene and seasonal variation. J. Am. Soc. Hort. Sci. 113: 456–460.

    Google Scholar 

  • Ryder, E.J. (1989) Studies of three new genes, linkage, and epistasis in lettuce. J. Am. Soc. Hort. Sci. 114: 129–133.

    Google Scholar 

  • Ryder, E.J. (1992) Lettuce genetics: inheritance, linkage, and epistasis. J. Am. Soc. Hort. Sci. 117 (in press).

    Google Scholar 

  • Sequira, L. (1978) Two root rot resistant varieties of lettuce. Wis. Agric. Exp. Sta. Rep. 2 p.

    Google Scholar 

  • Thompson, R.C. (1938) Genetic relations of some color factors in lettuce. U.S. Dept. Agr. Tech. Bul. 620.

    Google Scholar 

  • Waycott, W. (1989) Genetic and physiological studies on stem elongation in lettuce (Lactuca sativa L.). Ph.D. thesis, University of California, Santa Cruz.

    Google Scholar 

  • Whitaker, T.W. (1944) The inheritance of chlorophyll deficiencies in cultivated lettuce. J. Hered. 35: 317–320.

    Google Scholar 

  • Whitaker, T.W. (1950) The genetics of leaf form in cultivated lettuce. I. The inheritance of lobing. Proc. Am. Soc. Hort. Sci. 56: 389–394.

    Google Scholar 

  • Whitaker, T.W. (1968) A chlorophyll-deficient mutant in lettuce. Veg. Improv. Newsletter 10: 5.

    Google Scholar 

  • Whitaker, T.W. and Bohn, G.W. (1953) The striate-vein character in lettuce. J. Hered. 44: 177–180.

    Google Scholar 

  • Whitaker, T.W. and McCollum, G.D. (1954) Shattering in lettuce - its inheritance and biological significance. Bul. Torrey Bot. Club 81: 104–110.

    Article  Google Scholar 

  • Whitaker, T.W. and Pryor, D.E. (1941) The inheritance of resistance to powdery mildew (Erysiphe cichoracearum) in lettuce. Phytopathology 31: 534–540.

    Google Scholar 

  • Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, A. and Tingey, S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Zink, F.W. and Duffus, J.E. (1970) Linkage of turnip mosaic virus susceptibility and downy mildew, Bremia lactucae ,resistance in lettuce. J. Am. Soc. Hort. Sci. 95: 420–422.

    Google Scholar 

  • Zink, F.W. and Duffus, J.E. (1973) Inheritance and linkage of turnip mosaic virus and downy mildew (Bremia lactucae) reaction in Lactuca serriola J. Am. Soc. Hort. Sci. 98: 49–51.

    Google Scholar 

  • Zink, F.W. Duffus, J.E. and Kimble, K.A. (1973) Relationship of a non-lethal reaction to a virulent isolate of lettuce mosaic virus and turnip mosaic susceptibility in lettuce. J. Am. Soc. Hort. Sci. 98: 41–45.

    Google Scholar 

  • Zitter, T.A. and Guzman, V.L. (1977) Evaluation of cos lettuce crosses, endive cultivars, and Cichorium introductions for resistance to bidens mottle virus. Plant Dis. Rep. 61: 767–770.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Michelmore, R.W., Kesseli, R.V., Ryder, E.J. (1994). Genetic mapping in lettuce. In: Phillips, R.L., Vasil, I.K. (eds) DNA-based markers in plants. Advances in Cellular and Molecular Biology of Plants, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1104-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1104-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4482-0

  • Online ISBN: 978-94-011-1104-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics