Skip to main content

Silencing of Chitinase Expression in Transgenic Plants: An Autoregulatory Model

  • Chapter
Book cover Homologous Recombination and Gene Silencing in Plants

Abstract

Somatic cells can undergo mitotically transmitted changes in state that do not result from permanent changes in genetic constitution. These alterations in cellular heredity are called epigenetic changes to emphasize their role in the somatic transmission of developmental (i.e. epigenetic) information and to distinguish them from rare, spontaneous mutations (Nanney 1958). Epigenetic changes are defined operationally as directed cell-heritable, phenotypic changes that are potentially reversible and not transmitted meiotically (Meins 1980& Lutz 1980). It is likely that the earlier distinction made between mitotic and meiotic transmission, particularly in plants, is artificial. Forms of heritable variation such as paramutation (Brink 1973), phases of transposable-element activity (Fedoroff et al. 1989), and genomic imprinting (Surani 1991) have the properties typical of epigenetic changes, but are inherited both mitotically and meiotically. More recently, Holliday (1987) coined the term epimutation to denote heritable variation resulting from modifications of DNA due to methylation of cytosines. Jorgensen (1993) has suggested applying this term more broadly to meiotically transmitted states with a developmental basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boller T (1985) Induction of hydrolases as a defense reaction against pathogens. UCLA Symp Mol Cell Biol N S 22: 247–262.

    CAS  Google Scholar 

  • Brink RA (1973) Paramutation. Ann Rev Genet 7: 129–152.

    Article  CAS  Google Scholar 

  • de Carvalho F, Gheysen G, Kushnir S, van Montagu M, Inzé D & Castresana C (1992) Suppression of β-1,3-glucanase transgene expression in homozygous plants. EMBO J 11: 2595–2602.

    PubMed  Google Scholar 

  • Delbrück M (1949) Discussion following the paper by TM Sonneborn and GH Beale. Colloq Int Centre Nat Recherche Sci, Paris 7: 25.

    Google Scholar 

  • Elkind Y, Edwards R, Mavandad M, Hedrick S, Ribak O, Dixon RA & Lamb CJ (1990) Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia lyase gene. Proc Natl Acad Sci USA 87: 9057–9061.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff N, Masson P & Banks J-A (1989) Mutations, epimutations, and the developmental programming of the maize suppressor-mutator transposable element. BioEssays 10: 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Goring DR, Thomson L & Rothstein SJ (1991) Transformation of a partial nopaline synthase gene into tobacco suppresses the expression of a resident wild-type gene. Proc Natl Acad Sci USA 88: 1770–1774.

    Article  PubMed  CAS  Google Scholar 

  • Grierson D, Fray RG, Hamilton AJ, Smith CJS & Watson CF (1991) Does co-suppression of sense genes in transgenic plants involve antisense RNA? TIBTECH 9: 122–123.

    Article  Google Scholar 

  • Hart CM, Fischer B, Neuhaus J-M & Meins F Jr (1992) Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol Gen Genet 235: 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1987) The inheritance of epigenetic defects. Science 238: 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Jablonka E, Lachmann M & Lamb MJ (1992) Evidence, mechanisms and models for the inheritance of acquired characters. J Theor Biol 158: 245–268.

    Article  Google Scholar 

  • Jorgensen R (1990) Altered gene expression in plants due to trans interactions between homologous genes. TIBTECH 8: 340–344.

    Article  CAS  Google Scholar 

  • Jorgensen R (1991) Beyond antisense — How do transgenes interact with homologous plant genes? TIBTECH 9: 266–267.

    Article  Google Scholar 

  • Jorgensen R (1992) Silencing of plant genes by homologous transgenes. AgBiotech News Info 4: 265N-273N.

    Google Scholar 

  • Jorgensen R (1993) The germinal inheritance of epigenetic information in plants. Phil Trans R Soc London B 339: 173–181.

    Article  Google Scholar 

  • Linn F, Heidmann I, Saedler H & Meyer P (1990) Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Molec Gen Genet 222: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Matzke M & Matzke AJM (1993) Genomic imprinting in plants: parental effects and trans-inactivation phenomena. Annu Rev Plant Physiol Plant Mol Biol 44: 53–76.

    Article  CAS  Google Scholar 

  • Matzke MA, Primig M, Trnovsky J & Matzke AJM (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8: 643–649.

    PubMed  CAS  Google Scholar 

  • Meins F Jr (1983) Heritable variation in plant cell culture. Annu Rev Plant Physiol 34: 327–346.

    Article  Google Scholar 

  • Meins F Jr (1989) A biochemical switch model for cell-heritable variation in cytokinin requirement. In: Goldberg R (ed) Molecular Basis of Plant Development (pp 13–24). Alan R. Liss, New York.

    Google Scholar 

  • Meins F Jr & Binns AN (1978) Epigenetic clonal variation in the requirement of plant cells for cytokinins. In: Subtelny S & Sussex IM (eds) The Clonal Basis for Development (pp 185–201). Academic Press, New York.

    Google Scholar 

  • Meins F Jr & Binns AN (1979) Cell determination in plant development. Bioscience 29: 221–225.

    Article  Google Scholar 

  • Meins F Jr & Lutz J (1980) Epigenetic changes in tobacco cell culture. In: Rubenstein I et al. (eds) Emergent Techniques for the Improvement of Crops (pp 220–236). University of Minnesota Press, Minneapolis, MN, USA.

    Google Scholar 

  • Meins F Jr, Neuhaus J-M, Sperisen C & Ryals J (1992) The primary structure of plant pathogenesis-related glucanohydrolases and their genes. In: Boller T & Meins F Jr (eds) Genes Involved in Plant Defense (pp 245–282). Springer Verlag, Vienna/New York.

    Chapter  Google Scholar 

  • Meyer P, Linn F, Heidmann I, Meyer zAH, Niedenhof I & Saedler H (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize Al gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231: 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Mittelsten Scheid O, Paszkowski J & Potrykus I (1991) Reversible inactivation of a transgene in Arabidopsis thaliana. Molec Gen Genet 228: 104–112.

    Google Scholar 

  • Mol J, van Blokland R & Kooter J (1991) More about co-suppression. TIBTECH 9: 182–183.

    Article  Google Scholar 

  • Monod J & Jacob F (1961) General conclusions: telenomic mechanisms in cellular metabolism, growth and differentiation. Cold Spring Harb Symp Quant Biol 26: 389–401.

    Article  PubMed  CAS  Google Scholar 

  • Nanney DL (1958) Epigenetic control systems. Proc Natl Acad Sci USA 44: 712–717.

    Article  PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C & Jorgensen R (1990) Induction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289.

    PubMed  CAS  Google Scholar 

  • Neuhaus J-M, Ahl-Goy P, Hinz U, Flores S & Meins F Jr (1991a) High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Molec Biol 16: 141–151.

    Article  CAS  Google Scholar 

  • Neuhaus J-M, Sticher L, Meins F Jr & Boiler T (1991b) A short C-terminal sequence necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA 88: 10362–10366.

    Article  PubMed  CAS  Google Scholar 

  • Shinshi H, Mohnen D & Meins F Jr (1987) Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA 84: 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Shinshi H, Neuhaus J-M, Ryals J & Meins F Jr (1990) Structure of a tobacco endochitinase gene: evidence that different chitinases genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Molec Biol 14: 357–368.

    Article  CAS  Google Scholar 

  • Smith CJS, Watson CF, Bird CR, Ray J, Schuch W & Grierson D (1990) Expression of a a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol Gen Genet 224: 477–481.

    Article  PubMed  CAS  Google Scholar 

  • Sperisen C, Ryals J & Meins F Jr (1991) Comparison of cloned genes provides evidence for intergenomic exchange of DNA in the evolution of a tobacco glucan endo-1,3-β-glucosidase gene family. Proc Natl Acad Sci USA 88: 1820–1824.

    Article  PubMed  CAS  Google Scholar 

  • Sticher L, Hofsteenge J, Milani A, Neuhaus J-M & Meins F Jr (1992) Vacuolar chitinases of tobacco: a new class of hydroxyproline-containing proteins. Science 257: 655–657.

    Article  PubMed  CAS  Google Scholar 

  • Surani MA (1991) Genomic imprinting: developmental significance and molecular mechanisms. Curr Opin Genet Dev 1: 141–246.

    Article  Google Scholar 

  • van Buuren M, Neuhaus J-M, Shinshi H, Ryals J & Meins F Jr (1992) The structure and regulation of homeologous tobacco endochitinase genes of Nicotiana sylvestris and N. tomentosiformis origin. Mol Gen Genet 232: 460–469.

    Article  PubMed  Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JNM & Stuitje AR (1990) Flavonoid genes in Petunia: addition of a limited number of gene copies may lead to a supression of gene expression. Plant Cell 2: 291–299.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meins, F., Kunz, C. (1994). Silencing of Chitinase Expression in Transgenic Plants: An Autoregulatory Model. In: Paszkowski, J. (eds) Homologous Recombination and Gene Silencing in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1094-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1094-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4478-3

  • Online ISBN: 978-94-011-1094-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics