Skip to main content

Analysis of Extended Surface Arrays for Air-Cooled Electronic Equipment

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 258))

Abstract

Previous work, by the author and others, pertaining to parameterizations for individual fins is reviewed. These are the thermal transmission matrices and ratios which were devised to facilitate the analysis of an assembly of individual fins in an array of extended surface. An elaboration of the validity of these parameters, particularly with regard to their superiority over the notion of fin efficiency or fin effectiveness is made. The concept of reciprocity is developed and the representation of an individual fin as a connection of just three simple resistances is developed. A procedure for the nodal analysis of finned arrays is developed via a matrix oriented approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chen, S. Y., and Zyskowski, G. L. (1963). “Steady state heat conduction in a straight fin with variable heat transfer coefficient,” ASME Paper 63-HT-l, 6th ASME-AIChE Heat Transfer Conf., Boston, MA.

    Google Scholar 

  • Gardner, K. A. (1945). “Efficiency of extended surface,” Trans. ASME, Vol. 67, p. 621.

    Google Scholar 

  • Han, L. S., and Lefkowitz, S. G. (1960). “Constant cross section fin efficiencies for non-uniform surface heat transfer coefficients,” ASME Paper 60-WA-41.

    Google Scholar 

  • Harper, D. R., and Brown, W. B. (1922). “Mathematical equations for heat conduction in the fins of air cooled engines,” NACA Report No. 158.

    Google Scholar 

  • Kraus, A. D., Snider, A. D., and Doty, L. F. (1978). “An efficient algorithm for evaluating arrays of extended surface,” J. Heat Transfer, Vol. 100, p. 288.

    Article  Google Scholar 

  • Kraus, A. D., and Snider, A. D. (1980). “New parameterizations for heat transfer in fins and spines,” J. Heat Transfer, Vol. 102, p. 415.

    Article  Google Scholar 

  • Kraus, A. D., Snider, A. D., and Landis, F. (1982). “The reciprocity of extended surface and the node analysis of finned arrays,” Proc. 7th Intl Heat Transfer Conf, Munich, FRG., Vol. 6, p. 223.

    Google Scholar 

  • Kraus, A. D., and Landis, F. (1990). “The analysis of extended surfaces with a variable heat transfer coefficient,” Proc. 9th Intl Heat Transfer Conf., Jerusalem, Israel, Vol. 4, p. 117.

    Google Scholar 

  • Manzoor, M., Ingham, D. B., and Heggs, P. J. (1983). “Improved formulations for the analysis of convecting and radiating finned surfaces”, AIAA J., Vol. 21, p. 120.

    Article  MATH  Google Scholar 

  • Murray, W. M. (1938). “Heat transfer through an annular disk or fin of uniform thickness,” Trans. ASME, J. Applied Mech., Vol. 60, p. A78.

    Google Scholar 

  • Parsons, S. R. and Harper, D. R. (1922). “Radiators for aircraft engines,” US Bureau of Standards, Technical Paper No. 211, 327.

    Google Scholar 

  • Sparrow, E. M., Baliga, B. R., and Patankar, S. V. (1978). “Forced convection heat transfer from a shrouded fin array with and without tip clearance,” J. Heat Transfer, Vol. 100, p. 572.

    Article  Google Scholar 

  • Sparrow, E. M., and Hennecke, D. K. (1970). “Temperature depression at the base of a fin,” J. Heat Transfer, Vol. 92, p. 204.

    Article  Google Scholar 

  • Sparrow, E. M., and Lee, L. (1975). “Effects of fin base depression in a multifin array”, J. Heat Transfer, Vol. 97, p. 63.

    Google Scholar 

  • Trumpler, P. R. (1945). “Discussion of Gardner, K. A. (1945). Efficiency of extended surface,” Trans. ASME, Vol. 67, p. 630.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kraus, A.D. (1994). Analysis of Extended Surface Arrays for Air-Cooled Electronic Equipment. In: Kakaç, S., Yüncü, H., Hijikata, K. (eds) Cooling of Electronic Systems. NATO ASI Series, vol 258. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1090-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1090-7_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4476-9

  • Online ISBN: 978-94-011-1090-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics