Noncompact Lie Groups and Some of Their Applications pp 199-224

Part of the NATO ASI Series book series (ASIC, volume 429) | Cite as

Path Integrals and Lie Groups

  • Akira Inomata
  • Georg Junker

Abstract

The roles of Lie groups in Feynman’s path integrals in non-relativistic quantum mechanics are discussed. Dynamical as well as geometrical symmetries are found useful for path integral quantization. Two examples having the symmetry of a non-compact Lie group are considered. The first is the free quantum motion of a particle on a space of constant negative curvature. The system has a group SO (d, 1) associated with the geometrical structure, to which the technique of harmonic analysis on a homogeneous space is applied. As an example of a system having a non-compact dynamical symmetry, the (d -dimensional harmonic oscillator is chosen, which has the non-compact dynamical group SU (1,1) besides its geometrical symmetry SO (d). The radial path integral is seen as a convolution of the matrix functions of a compact group element of SU (1,1) on the continuous basis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Miller, Lie Theory and Special Functions, (Academic Press, New York, 1968).MATHGoogle Scholar
  2. [2]
    N.Ya. Vilenkin, Special Functions and the Theory of Group Representations, (Amer. Math. Soc., Providence, RI, 1968).MATHGoogle Scholar
  3. [3]
    A.O. Barut, Dynamical Groups and Generalized Symmetries in Quantum Theory, (University of Canterbury Publ., Christchurch, New Zealand, 1971).Google Scholar
  4. [4]
    A. Inomata and M.A. Kayed, Phys. Lett. A 108 (1985) 9.MathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Junker and A. Inomata, in M.C. Gutzwiller, A. Inomata, J.R. Klauder and L. Streit (eds.), Path Integrals from meV to MeV, (World Scientific, Singapore, 1986) p. 315.Google Scholar
  6. [6]
    A. Inomata and R. Wilson, in A.O. Barut and H.D. Doebner (eds.), Conformai Groups and Related Symmetries, (Springer, Berlin, 1986) p.42.CrossRefGoogle Scholar
  7. [7]
    M. Böhm and G. Junker, J. Math. Phys. 28 (1987) 1978.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    A.O. Barut, A. Inomata and G. Junker, J. Phys. A 20 (1987) 6271.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    A.O. Barut, A. Inomata and G. Junker, J. Phys. A 23 (1990) 1179.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    G. Junker, in V. Sayakanit, W. Sritrakool, J. Berananda, M.C. Gutzwiller, A. Inomata, S. Lundqvist, J.R. Klauder and L.S. Schulman (eds.), Path Integrals from meV to MeV, (World Scientific, Singapore, 1989) p.217.Google Scholar
  11. [11]
    S. Ozaki, Lecture notes at Kyushu University (1955) unpublished.Google Scholar
  12. [12]
    S.F. Edwards and Y.V. Gulyaev, Proc. Roy. Soc. London A 279 (1964) 229.MathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Inomata, Benét Laboratories Technical Report WVT-6718, (1967)Google Scholar
  14. D. Peak and A. Inomata, J. Math. Phys. 10 (1969) 1422.MathSciNetCrossRefGoogle Scholar
  15. [14]
    M. Böhm and G. Junker, J. Math. Phys. 30 (1989) 1195.MathSciNetMATHCrossRefGoogle Scholar
  16. [15]
    A. Inomata, H. Kuratsuji and C.C. Gerry, Path Integrals and Coherent States of SU (2) and SU (1,1), (World Scientific, Singapore, 1992).Google Scholar
  17. [16]
    L.S. Schulman, Phys. Rev. 176 (1968) 1558.MathSciNetCrossRefGoogle Scholar
  18. [17]
    J.S. Dowker, Ann. Phys. (NY) 62 (1971) 361.MathSciNetCrossRefGoogle Scholar
  19. [18]
    A.O. Barut, C.K.E. Schneider and R. Wilson, J. Phys. 20, (1979) 2244.MathSciNetGoogle Scholar
  20. [19]
    Private communication with Raj Wilson.Google Scholar
  21. [20]
    I.H. Duru and H. Kleinert, Phys. Lett. B 84 (1979) 185.MathSciNetCrossRefGoogle Scholar
  22. [21]
    P. Kustaanheimo and E. Stiefel, J. Reine Angew. Math. 218 (1965) 207.MathSciNetGoogle Scholar
  23. [22]
    R. Ho and A. Inomata, Phys. Rev. Lett. 48 (1982) 231.MathSciNetCrossRefGoogle Scholar
  24. [23]
    L.H. Hostler, J. Math. Phys. 5 (1964) 591.MathSciNetCrossRefGoogle Scholar
  25. [24]
    A. Inomata, in M.C. Gutzwiller, A. Inomata, J.R. Klauder and L. Streit (eds.), Path Integrals from meV to MeV, (World Scientific, Singapore, 1986) p. 433, and A. Inomata, in V. Sayakanit, W. Sritrakool, J. Berananda, M.C. Gutzwiller, A. Inomata, S. Lundqvist, J.R. Klauder and L.S. Schulman (eds.), Path Integrals from meV to MeV, (World Scientific, Singapore, 1989) p.112.Google Scholar
  26. [25]
    A. Inomata, Phys. Lett. A 101 (1984) 253.MathSciNetCrossRefGoogle Scholar
  27. [26]
    A.O. Barut, A. Inomata and R. Wilson, J. Phys. A 20 (1987) 4075.MathSciNetCrossRefGoogle Scholar
  28. [27]
    A.O. Barut, A. Inomata and R. Wilson, J. Phys. A 20 (1987) 4083.MathSciNetCrossRefGoogle Scholar
  29. [28]
    See, e.g., W. Fischer, H. Leschke and P. Müller, J. Phys. A 25 (1992) 3835.MathSciNetMATHCrossRefGoogle Scholar
  30. [29]
    See, e.g., W. Fischer, H. Leschke and P. Müller, Ann. Phys. (NY) (1993) in press.Google Scholar
  31. [30]
    A. Inomata and G. Junker, in H.D. Doebner, W. Scherer and F. Schroeck (eds.), Classical and Quantum Systems — Foundations and Symmetries, (World Scientific, Singapore, 1993) p.334.Google Scholar
  32. [31]
    A.O. Barut and C. Fronsdal, Proc. Roy. Soc. (Lond.) A 287 (1966) 532.MathSciNetCrossRefGoogle Scholar
  33. [32]
    A.O. Barut and E.C. Phillips, Comm. Math. Phys. 8 (1968) 52.MathSciNetMATHCrossRefGoogle Scholar
  34. [33]
    G. Lindblad and B. Nagel, Ann. Inst. Henri Poincaré A 13 (1970) 27.MathSciNetMATHGoogle Scholar
  35. [34]
    N. Mukunda and B. Radhakrishnan, J. Math. Phys. 14 (1973) 254.MathSciNetMATHCrossRefGoogle Scholar
  36. [35]
    R.P. Feynman, Rev. Mod. Phys. 20 (1948) 367.MathSciNetCrossRefGoogle Scholar
  37. [36]
    M. Kac, Probability and Related Topics in the Physical Science, (Interscience, New York, 1959).Google Scholar
  38. [37]
    E. Nelson, J. Math. Phys. 5 (1964) 332.MATHCrossRefGoogle Scholar
  39. [38]
    W. Faris, Pac. J. Math. 22 (1967) 47.MathSciNetMATHCrossRefGoogle Scholar
  40. [39]
    B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms (Princeton University Press, Princeton, 1971).MATHGoogle Scholar
  41. [40]
    I.M. Gel’fand, Dokl. Akad. Nauk SSSR 70 (1950) 769.Google Scholar
  42. [41]
    F.A. Berezin and I.M. Gel’fand, Trans. Amer. Math. Soc. Series 2 21 (1962) 193.MathSciNetGoogle Scholar
  43. [42]
    M.C. Gutzwiller, Physica Scripta T 9 (1985) 184.MathSciNetCrossRefGoogle Scholar
  44. [43]
    C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, (Freeman, San Fransisco, 1970).Google Scholar
  45. [44]
    C. Grosche and F. Steiner, Ann. Phys. (NY) 182 (1987) 120.MathSciNetCrossRefGoogle Scholar
  46. [45]
    P.D. Lax and R.S. Phillips, Comm. Pure Appl. Math. 31 (1978) 415.MathSciNetMATHCrossRefGoogle Scholar
  47. [46]
    Grosche and Steiner [44] were the first to realize that the Green function can be given in closed form, but their result was incorrect. The correct form of the Green function is given in ref. [10].Google Scholar
  48. [47]
    M. Moshinsky and C. Quesne, J. Math. Phys. 12 (1971) 1780.MathSciNetMATHCrossRefGoogle Scholar
  49. [48]
    V. Bargmann, Ann. Math. 48 (1947) 568.MathSciNetMATHCrossRefGoogle Scholar
  50. [49]
    R.L. Shapiro and N.Ya. Vilenkin, in N.A. Markov, V.I. Man’ko and V.V. Dodonov (eds.), Group Theoretical Methods in Physics Vol. I, (VNU Science Press, Utrecht, 1986) p.551.Google Scholar
  51. [50]
    G. Junker, J. Phys. A 23 (1989) L881.MathSciNetCrossRefGoogle Scholar
  52. [51]
    A.O. Barut and R. Raczka, Theory of Group Representations and Applications, 2nd edition (Polish Scientific Publ., Warszawa, 1980).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Akira Inomata
    • 1
  • Georg Junker
    • 2
  1. 1.Department of PhysicsState University of New York at AlbanyAlbanyUSA
  2. 2.Institut für Theoretische Physik IUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations