Advertisement

Characterization of Rotational Isomerization Processes in Monorotor Molecules

Chapter
Part of the Topics in Molecular Organization and Engineering book series (MOOE, volume 12)

Abstract

A theoretical approach, in which the potential functions representing rotational isomerization processes are expressed in terms of linear combinations of local potentials, is presented. Partitioning the torsional potential function allows the identification of specific contributions that are at the origin of the shape of the potential curves at different regions along the torsional variable. Key properties, such as barrier heights, are then expressed parametrically in terms of properties associated to the stable conformations. Simple analytic expressions are formulated in order to explore, quantitatively and qualitatively, the main characteristics of intermediate conformers connecting the reference isomers. This procedure is used to analyse ab initio results concerning the cis-trans isomerization reaction of three series of molecules: XY-NY, OXC-CXO, and XS-SX (X =H, F, or Cl; Y = O or S). We determine the relative stabilities of the different isomers and evaluate the associated potential barriers. It is shown that the mathematical procedure used to obtain potential functions is convenient enough to be applied to more complex isomerization reactions.

Keywords

Potential Function Barrier Height Internal Rotation Stable Isomer Oxalyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Maruani, A. Hernández-Laguna and Y.G. Smeyers: J. Chem. Phys. 63 (1975) 4515; ibid. 76 (1982) 3123 [Erratum 81 (1984) 1519].ADSCrossRefGoogle Scholar
  2. [2]
    J. Maruani and A. Toro-Labbé: Can. J. Chem. 66 (1988) 1948.CrossRefGoogle Scholar
  3. [3]
    Y.G. Smeyers: Introduction to Non-Rigid Molecule Theory, Adv. Quantum Chem., Vol. 23, Academic Press, New York (1992), pp. 1–77.Google Scholar
  4. [4]
    B. Pullman (ed.): Quantum Mechanics of Molecular Conformations, John Wiley & Sons, New York (1976).Google Scholar
  5. [5]
    A. Toro-Labbé and C. Cárdenas-Lailhacar: Int. J. Quantum Chem. 32 (1987) 685.CrossRefGoogle Scholar
  6. [6]
    A. Toro-Labbé: J. Mol. Struct. (Theochem) 180 (1988) 209.CrossRefGoogle Scholar
  7. [7]
    A. Toro-Labbé: J. Mol. Struct. (Theochem) 207 (1990) 247.CrossRefGoogle Scholar
  8. [8]
    C. Cárdenas-Lailhacar and A. Toro-Labbé: Theor. Chim. Acta 76 (1990) 411.CrossRefGoogle Scholar
  9. [9]
    (a) M. Nonella, J.R. Huber and T.K. Ha: J. Phys. Chem. 91 (1987) 5203; (b) R.P. Müller, M. Nonella, P. Russegger and J.R. Huber: Chem. Phys. 87 (1984) 351.CrossRefGoogle Scholar
  10. [10]
    S. Nakamura, M. Takahashi, R. Okazaki and K. Morokuma, J. Am. Chem. Soc. 109 (1987) 4142.CrossRefGoogle Scholar
  11. [11]
    G.E. McGraw, D.L. Bernitt and I.C. Hisatsune: J. Chem. Phys. 45 (1966) 1392.ADSCrossRefGoogle Scholar
  12. [12]
    H. Jones, R.M. Badger and G.E. Moore: J. Chem. Phys. 19 (1951) 1599.ADSCrossRefGoogle Scholar
  13. [13]
    C.M. Deeley and I.M. Mills: Mol. Phys. 54 (1985) 23.ADSCrossRefGoogle Scholar
  14. [14]
    R.T. Hall and G.C. Pimentel: J. Chem. Phys. 38 (1963) 1889.ADSCrossRefGoogle Scholar
  15. [15]
    A.P. Cox, A.H. Brittain and D.J. Finnigan: J. Chem. Soc. Faraday Trans. 61 (1971) 2179.ADSGoogle Scholar
  16. [16]
    P.A. McDonald and J.S. Shirk: J. Chem. Phys. 11 (1982) 2355.ADSCrossRefGoogle Scholar
  17. [17]
    L.A. Curtiss and V.A. Maroni: J. Phys. Chem. 90 (1986) 58.CrossRefGoogle Scholar
  18. [18]
    L.J. Lawlor, K. Vasudevan and F. Grein: J. Am. Chem. Soc. 100 (1978) 8062.CrossRefGoogle Scholar
  19. [19]
    R.E. Dodd, J.A. Rolfe and L.A. Woodward: Trans. Faraday Soc. 52 (1956) 145.CrossRefGoogle Scholar
  20. [20]
    A.C. Legon and D.J. Miller: J. Chem. Soc. A (1968) 1736.Google Scholar
  21. [21]
    R. Vance and A.G. Turner: Inorg. Chem. Acta 149 (1988) 95.CrossRefGoogle Scholar
  22. [22]
    D.A. Dixon and K.O. Christe: J. Phys. Chem. 96 (1992) 1018.CrossRefGoogle Scholar
  23. [23]
    P.N. Noble: J. Phys. Chem. 95 (1991) 4695.CrossRefGoogle Scholar
  24. [24]
    R.R. Smardzewski and W.F. Fox: J. Chem. Phys. 60 (1974) 2980.ADSCrossRefGoogle Scholar
  25. [25]
    S.A. Sorenson and P.N. Noble: J. Chem. Phys. 11 (1982) 2483.ADSCrossRefGoogle Scholar
  26. [26]
    G.N. Currie and D.A. Ramsay: Can. J. Phys. 49 (1971) 317.ADSCrossRefGoogle Scholar
  27. [27]
    J.R. Durig, C.C. Tong and Y.S. Li: J. Chem. Phys. 57 (1972) 4425.ADSCrossRefGoogle Scholar
  28. [28]
    A.R.H. Cole, Y.S. Li and J.R. Durig: J. Mol. Spectrosc. 61 (1976) 346.ADSCrossRefGoogle Scholar
  29. [29]
    C.E. Dykstra and H.F. Schaefer: J. Am. Chem. Soc. 97 (1975) 7210.CrossRefGoogle Scholar
  30. [30]
    J. Tyrrel: J. Am. Chem. Soc. 98 (1976) 5456.CrossRefGoogle Scholar
  31. [31]
    G.R. De Maré: J. Mol. Struct. (Theochem) 107 (1984) 127.CrossRefGoogle Scholar
  32. [32]
    Ch.W. Bock, Y.N. Panchenko and S.V. Krasnoshchiokov: Chem. Phys. 125 (1988) 63.CrossRefGoogle Scholar
  33. [33]
    Ch.W. Bock and A. Toro-Labbé: J. Mol Struct. (Theochem) 232 (1991) 239.CrossRefGoogle Scholar
  34. [34]
    K. Kuchitsu, T. Fukuyama and Y Morino: J. Mol. Struct. 4 (1969) 41.ADSCrossRefGoogle Scholar
  35. [35]
    J.R. Durig, S.C. Brown and S.E. Hannum: J. Chem. Phys. 54 (1971) 4428.ADSCrossRefGoogle Scholar
  36. [36]
    J.R. Durig and S.E. Hannum: J. Chem. Phys. 54 (1971) 4428.ADSCrossRefGoogle Scholar
  37. [37]
    K. Hagen and K. Hedberg: J. Am. Chem. Soc. 95 (1973) 1003.CrossRefGoogle Scholar
  38. [38]
    E. Herbst and G. Winnewisser: Chem. Phys. Lett. 155 (1989) 572.ADSCrossRefGoogle Scholar
  39. [39]
    E. Herbst, G. Winnewisser, K.M.T Yamada, D.J. De Frees and A.D. McLean: J. Chem. Phys. 91 (1989) 5905.ADSCrossRefGoogle Scholar
  40. [40]
    R.L. Kuczkowski: J. Am. Chem. Soc. 86 (1964) 3617.CrossRefGoogle Scholar
  41. [41]
    R.W. Davis and S. Firth: J. Mol. Spectrosc. 145 (1991) 225.ADSCrossRefGoogle Scholar
  42. [42]
    E. Hirota: Bull. Chem. Soc. Japan 31 (1958) 130.CrossRefGoogle Scholar
  43. [43]
    A. Hinchliffe: J. Mol. Struct. 55 (1979) 127.ADSCrossRefGoogle Scholar
  44. [44]
    D. Dixon, D. Zeroka, J. Wendoloski and Z. Wasserman: J. Phys. Chem. 89 (1985) 5334. F. Grein: Chem. Phys. Lett. 116 (1985) 323. T.K. Ha: J. Mol. Struct. 122 (1985) 225. C.J. Marsden and B.J. Smith: J. Phys. Chem. 92 (1988) 347.CrossRefGoogle Scholar
  45. [45]
    G.I. Cárdenas-Jirón, C. Cárdenas-Lailhacar and A. Toro-Labbé: J. Mol Struct. (Theochem) 210 (1990) 279.CrossRefGoogle Scholar
  46. [46]
    G.I. Cárdenas-Jirón, J.R. Letelier, J. Maruani and A. Toro-Labbé: Molecular Engineering 2 (1992) 17.CrossRefGoogle Scholar
  47. [47]
    G.S. Hammond: J. Am. Chem. Soc. 11 (1955) 334.CrossRefGoogle Scholar
  48. [48]
    J.E. Leffler: Science 117 (1953) 340.ADSCrossRefGoogle Scholar
  49. [49]
    G.I. Cárdenas-Jirón and A. Toro-Labbé: An. Quim. 88 (1992) 43.Google Scholar
  50. [50]
    G.I. Cárdenas-Jirón: M.Sc. Thesis, University of Chile, Santiago (1993).Google Scholar
  51. [51]
    M.R. Peterson: Program Monstergauss (1977), Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.Google Scholar
  52. [52]
    G.I. Cárdenas-Jirón and A. Toro-Labbé: Chem. Phys. Lett. 222 (1994) 8.ADSCrossRefGoogle Scholar
  53. [53]
    K.W. Butz, J.R. Johnson, D.J. Krajnovich and C.S. Parmenter: J. Chem. Phys. 86 (1987) 5923.ADSCrossRefGoogle Scholar
  54. [54]
    D.M. Hassett, K. Hedberg and C. Marsden: J. Phys. Chem. 91 (1993) 4670.CrossRefGoogle Scholar
  55. [55]
    G. Winnewisser, M. Winnewisser and W. Gordy: J. Chem. Phys. 49 (1968) 3465.ADSCrossRefGoogle Scholar
  56. [56]
    G.I. Cá-Jirón, C. Cárdenas-Lailhacar and A. Toro-Labbé: J. Mol Struct. (Theochem) 282(1993) 113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  1. 1.Centro de Mecánica Cuántica Aplicada† Departamento de Química, Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Department of Physical SciencesPhiladelphia College of Textiles and SciencePhiladelphiaUSA
  3. 3.Laboratoire de Chimie Physique-Matière et RayonnementCNRS and UPMCParisFrance

Personalised recommendations