Skip to main content

Generalizing the Molecular Symmetry Group of Longuet-Higgins to Asymmetric Tunnelling Problems

  • Chapter
Structure and Dynamics of Non-Rigid Molecular Systems

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 12))

  • 102 Accesses

Abstract

This article describes the relationship of the Molecular Symmetry (MS) group of Longuet-Higgins and, ultimately, the Complete Nuclear Permutation-Inversion (CNPI) group to a molecular potential energy surface. The characterization of energy levels when“structural degeneracies”are lifted by finite tunnelling probabilities is outlined. Cosets of the MS group are used to obtain limiting numbers for the occurrence of structures of a given symmetry. It is shown how the conservation of point group symmetry elements along steepest descent pathways across the potential energy surface provides a useful framework for understanding isomerization. These ideas lead us to a generalization of the MS group to cases where a molecule samples more than one distinct structural form on the timescale of spectroscopic resolution. Tunnelling probabilities under these conditions are discussed and the circumstances under which the MS group could adequately describe“asymmetric”interconversions are explored. A number of simple examples is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Curie: J. Physique 5 (1894) 289.

    Google Scholar 

  2. R.S. Berry: Rev. Mod. Phys. 32 (1960) 447.

    Article  ADS  Google Scholar 

  3. H.C. Longuet-Higgins: Molec. Phys. 6 (1963) 445.

    Article  MathSciNet  ADS  Google Scholar 

  4. P.R. Bunker: Molecular Symmetry and Spectroscopy, Academic Press, New York (1979).

    Google Scholar 

  5. J.K.G. Watson: Can. J. Phys. 43 (1965) 1996.

    Article  ADS  MATH  Google Scholar 

  6. B.J. Dalton: Molec. Phys. 11 (1966) 265.

    Article  ADS  Google Scholar 

  7. S.L. Altmann: Proc. Roy. Soc. A298 (1967) 184.

    ADS  Google Scholar 

  8. Y.G. Smeyers: Adv. Quant. Chem. 24 (1992) 1.

    Article  Google Scholar 

  9. H. Frei, A. Bauder and H.H. Günthard: “The isometric group of non-rigid molecules”, in Large Amplitude Motion in Molecules, I, Top. Curr. Chem., Vol. 81 (1979), p. 3.

    Google Scholar 

  10. G.S. Ezra: Molec. Phys. 43 (1983) 771.

    Google Scholar 

  11. P. A.M. Dirac: The Principles of Quantum Mechanics, 4th edition, Oxford University Press (1958).

    Google Scholar 

  12. J.T. Hougen: J. Chem. Phys. 37 (1962) 1433.

    Article  ADS  Google Scholar 

  13. J.T. Hougen: J. Chem. Phys. 39 (1963) 358.

    Article  ADS  Google Scholar 

  14. P.R. Bunker and D. Papousek: J. Molec. Spect. 32 (1969) 419.

    Article  ADS  Google Scholar 

  15. J.T. Hougen: J. Phys. Chem. 90 (1986) 562.

    Article  Google Scholar 

  16. W.G. Klemperer: J. Chem. Phys. 56 (1972) 5478.

    Article  ADS  Google Scholar 

  17. R.G.A. Bone, T.W. Rowlands, N.C. Handy and A.J. Stone: Molec. Phys. 72 (1991) 33.

    Article  ADS  Google Scholar 

  18. P.G. Mezey: “Potential energy hypersurfaces”, Studies in Physical and Theoretical Chemistry 53 (1987).

    Google Scholar 

  19. J.N. Murrell and K.J. Laidler: Trans. Farad. Soc. 64 (1968) 371.

    Article  Google Scholar 

  20. F. Hund: Z. Physik 43 (1927) 805.

    Article  ADS  Google Scholar 

  21. E.B. Wilson Jr.: J. Chem. Phys. 3 (1935) 276.

    Article  ADS  Google Scholar 

  22. E.B. Wilson Jr.: J. Chem. Phys. 3 (1935) 818.

    Article  ADS  Google Scholar 

  23. R.G. Woolley: Israel J. Chem. 19 (1980) 30.

    Google Scholar 

  24. G.A. Natanson: Adv. Chem. Phys. 58 (1985) 55.

    Article  Google Scholar 

  25. J.N. Murrell and G.L. Pratt: Trans. Farad. Soc. 66 (1970) 1680.

    Article  Google Scholar 

  26. R.G. Gilbert and S.C. Smith: Theory of Unimolecular Recombination Reactions, Oxford and Cambridge MA (1990).

    Google Scholar 

  27. A.J. Karas, R.G. Gilbert and M.A. Collins: Chem. Phys. Lett. 193 (1992) 181.

    Article  ADS  Google Scholar 

  28. G. Wentzel: Z. Phys. 38 (1926) 518.

    Article  ADS  MATH  Google Scholar 

  29. H.A. Kramers: Z Phys. 39 (1926) 828.

    Article  ADS  MATH  Google Scholar 

  30. L. Brillouin: Compt. Rend. 183 (1926) 24.

    Google Scholar 

  31. H. Jeffreys: Proc. Lond. Math. Soc. 23 (1923) 428.

    Article  MathSciNet  Google Scholar 

  32. R.S. Berry: “A general phenomenonology for small clusters, however floppy”, in Quantum Dynamics of Molecules: The New Experimental Challenge to Theorists, R.G. Woolley (Ed.), NATO/ASI Series B, Vol. 57 (1979).

    Google Scholar 

  33. P.R. Bunker: “Practically everything you ought to know about the molecular symmetry group”, Vibrational Spectra and Structure, Vol. 3, J. R. Durig (Ed.), Marcel-Dekker, New York (1976).

    Google Scholar 

  34. T. Pedersen: J. Chem. Phys. 54 (1971) 4028.

    Article  ADS  Google Scholar 

  35. G.A. Natanson: Adv. Chem. Phys. 58 (1985) 55.

    Article  Google Scholar 

  36. J.K.G. Watson: Molec. Phys. 21 (1971) 577.

    Article  ADS  Google Scholar 

  37. M.J.S. Dewar: Farad. Discuss. 62 (1977) 197.

    Article  Google Scholar 

  38. N. Trinajstic (Ed.): Mathematics and Computational Concepts in Chemistry, Ellis-Horwood (1986).

    Google Scholar 

  39. C.W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, Wiley (1962).

    Google Scholar 

  40. S. Fujita: Symmetry and Combinatorial Enumeration in Chemistry, Springer-Verlag, Berlin (1991).

    Book  MATH  Google Scholar 

  41. D.M. Dennison and G.E. Uhlenbeck: Phys. Rev. 41 (1932) 313.

    Article  ADS  Google Scholar 

  42. G. Herzberg: Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand ( 1945).

    Google Scholar 

  43. J.M.R. Stone and I.M. Mills: Molec. Phys. 18 (1970) 631.

    Article  ADS  Google Scholar 

  44. K.W. Jucks, Z.S. Huang, R.E. Miller, G.T. Fraser, A.S. Pine, and W.J. Lafferty: J. Chem. Phys. 88 (1988) 2185.

    Article  ADS  Google Scholar 

  45. T.R. Dyke, B.J. Howard and W. Klemperer: J. Chem. Phys. 56 (1972) 2442.

    Article  ADS  Google Scholar 

  46. T.R. Dyke: J. Chem. Phys. 66 (1977) 492.

    Article  ADS  Google Scholar 

  47. G.T. Fraser: Int. Rev. Phys. Chem. 10 (1991) 189.

    Article  Google Scholar 

  48. L.H. Coudert and J.T. Hougen: J. Mol. Spect. 130 (1988) 86.

    Article  ADS  Google Scholar 

  49. L.L. Shipman, J.C. Owicki and H.A. Scheraga: J. Phys. Chem. 78 (1974) 2055.

    Article  Google Scholar 

  50. D. Nelson Jr. and W. Klemperer: J. Chem. Phys. 87 (1987) 139.

    Article  ADS  Google Scholar 

  51. H. Metiu, J. Ross, R. Silbey and T.F. George: J. Chem. Phys. 61 (1974) 3200.

    Article  MathSciNet  ADS  Google Scholar 

  52. D.J. Wales: J. Am. Chem. Soc. 112 (1990) 7908.

    Article  Google Scholar 

  53. The concept of the“highest symmetry structure on the global potential energy surface” was suggested to me by Matthew J. Bramley.

    Google Scholar 

  54. A.D. Liehr: J. Phys. Chem. 67 (1963) 471.

    Article  Google Scholar 

  55. G.T. Fraser, R.D. Suenram, F.J. Lovas, A.S. Pine, J.T. Hougen, W.J. Lafferty and J.S. Muenter: J. Chem. Phys. 89 (1988) 6028.

    Article  ADS  Google Scholar 

  56. D. Nelson Jr., G.T. Fraser and W. Klemperer: J. Chem. Phys. 83 (1985) 945.

    Article  ADS  Google Scholar 

  57. B.J. Dalton and P.D. Nicholson: Int. J. Quant. Chem. 9 (1975) 325.

    Article  Google Scholar 

  58. M. Quack: Molec. Phys. 34 (1977) 477.

    Article  ADS  Google Scholar 

  59. J. Ischtwan and M.A. Collins: J. Chem. Phys. 94 (1991) 7084.

    Article  ADS  Google Scholar 

  60. Y.G. Smeyers: J. Mol. Struct. 107 (1984) 3.

    Google Scholar 

  61. Y.G. Smeyers, M.N. Bellido and A. Niñno: J. Mol. Struct. 166 (1988) 1.

    Google Scholar 

  62. R.P. Bell: The Tunnel Effect In Chemistry, Chapman and Hall (1978).

    Google Scholar 

  63. R.G. Pearson: Theor. Chim. Acta. 16 (1970) 107.

    Article  Google Scholar 

  64. R.G. Pearson: Pure Appl. Chem. 27 (1971) 45.

    Article  Google Scholar 

  65. R.G. Pearson: Acc. Chem. Res. 4 (1971) 152.

    Article  Google Scholar 

  66. R.G. Pearson: Symmetry Rules for Chemical Reactions, Wiley-Interscience (1976).

    Google Scholar 

  67. R.F.W. Bader: Can. J. Chem. 40 (1962) 1164.

    Article  Google Scholar 

  68. A. Rodger and P.E. Schipper: Chem. Phys. 107 (1986) 329.

    Article  ADS  Google Scholar 

  69. K. Fukui: J. Phys. Chem. 74 (1970) 4162.

    Article  Google Scholar 

  70. J.W. Mclver Jr. and A. Komornicki: Chem. Phys. Lett. 10 (1971) 303.

    Article  ADS  Google Scholar 

  71. P. Valtazanos and K. Ruedenberg: Theor. Chim. Acta. 69 (1986) 281.

    Article  Google Scholar 

  72. J.W. Mclver Jr. and R.E. Stanton: J. Am. Chem. Soc. 94 (1972) 8618.

    Article  Google Scholar 

  73. R.E. Stanton and J.W. Mclver Jr.: J. Am. Chem. Soc. 97 (1975) 3632.

    Article  Google Scholar 

  74. J.W. Mclver Jr.: Acc. Chem. Res. 7 (1974) 72.

    Article  Google Scholar 

  75. R.G.A. Bone: Chem. Phys. Lett. 193 (1992) 557.

    Article  ADS  Google Scholar 

  76. P. Pechukas: J. Chem. Phys. 64 (1976) 1516.

    Article  ADS  Google Scholar 

  77. E.L. Muetterties: J. Am. Chem. Soc. 91 (1969) 1636.

    Article  Google Scholar 

  78. G. Binsch, E.L. Eliel and H. Kessler: Angew. Chem. Int. Ed. 10 (1971) 570.

    Article  Google Scholar 

  79. R.E. Leone and P.v.R. Schleyer: Angew. Chem. Int. Ed. 9 (1970) 860.

    Article  Google Scholar 

  80. D.G. Truhlar and A. Kuppermann: J. Am. Chem. Soc. 93 (1971) 1840.

    Article  Google Scholar 

  81. E.B. Wilson, J.C. Decius and D.C. Cross: Molecular Vibrations, McGraw-Hill, New York (1955).

    Google Scholar 

  82. A. Rodger and P.E. Schipper: J. Phys. Chem. 91 (1987) 189.

    Article  Google Scholar 

  83. S.L. Altmann: Rev. Mod. Phys. 35 (1963) 641.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. E.P. Wigner: Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York (1959).

    MATH  Google Scholar 

  85. A. Ceulemans, D. Beyens and L.G. Vanquickenbourne: J. Am. Chem. Soc. 106 (1984) 5824.

    Article  Google Scholar 

  86. A. Ceulemans and L.G. Vanquickenborne: Structure and Bonding 71 (1989) 126.

    Article  MathSciNet  Google Scholar 

  87. E. Ascher: J. Phys. C: Solid State Phys. 10 (1977) 1365.

    Article  ADS  Google Scholar 

  88. A. Rodger and P.E. Schipper: Inorg. Chem. 27 (1988) 458.

    Article  Google Scholar 

  89. A survey of the“Science Citation Index”

    Google Scholar 

  90. has revealed that since its publication in 1975, Dalton’s work has been referenced just 15 times in scientific papers and once in a book of conference proceedings. Approximately half of the references to ref. au][57]_are in connection with the non-rigidity of HF dimer, which the paper also addresses. One can only conclude that such an important result has been largely overlooked.

    Google Scholar 

  91. SCI, the“Science Citation Index”, Institute of Scientific Information, Philadelphia, U.S.A.

    Google Scholar 

  92. P.-O. Löwdin: Adv. Quant. Chem. 2 (1965) 213.

    Article  Google Scholar 

  93. R.L. Sormorjai and D.F. Hornig: J. Chem. Phys. 36 (1962) 1981.

    ADS  Google Scholar 

  94. J. Brickmann and H. Zimmermann: J. Chem. Phys. 50 (1968) 1609.

    Google Scholar 

  95. J.H. Busch and J.R. de la Vega: J. Am. Chem. Soc. 99 (1977) 2397.

    Article  Google Scholar 

  96. M.D. Harmony: Chem. Soc. Rev. 1 (1972) 211.

    Article  Google Scholar 

  97. A.D. Buckingham and F. Liu: Int. Rev. Phys. Chem. 1 (1981) 253.

    Article  Google Scholar 

  98. S.A.C. MacDowell and A.D. Buckingham: Chem. Phys. Lett. 182 (1991) 551.

    Article  ADS  Google Scholar 

  99. M. Kofranek, H. Lischka and A. Karpfen: Chem. Phys. 121 (1988) 137.

    Article  Google Scholar 

  100. H.S. Gutowsky, C. Chang, J.D. Keen, T.D. Klots and T. Emilsson: J. Chem. Phys. 83 (1985) 2070.

    Article  ADS  Google Scholar 

  101. M.S. Reeves and E.R. Davidson: J. Chem. Phys. 95 (1991) 6551.

    Article  ADS  Google Scholar 

  102. F.J. Lovas, R.D. Suenram and W.J. Stevens: J. Molec. Sped. 100 (1983) 316.

    Article  ADS  Google Scholar 

  103. S. Wolfe, L.M. Tel and I.G. Csizmadia: Can. J. Chem. 51 (1973) 2423.

    Article  Google Scholar 

  104. P.G. Mezey: Progr. Theor. Org. Chem. 2 (“Applications of MO Theory in Organic Chemistry”) (1977) 127.

    Google Scholar 

  105. S. Koseki and M.S. Gordon: J. Phys. Chem. 93 (1989) 118.

    Article  Google Scholar 

  106. K. N. Rao, ed.: Molecular Spectroscopy in Modern Research (1986).

    Google Scholar 

  107. E. Hirota, Y. Endo, S. Saito and J.L. Duncan: J. Molec. Spect. 89 (1981) 285.

    Article  ADS  Google Scholar 

  108. E. Hirota, T. Hirooka and Y. Morino: J. Molec. Spect. 26 (1968) 351.

    Article  ADS  Google Scholar 

  109. E.B. Wilson Jr.: J. Chem. Phys. 6 (1938) 740.

    Article  ADS  Google Scholar 

  110. R.G.A. Bone: New Applications of the Molecular Symmetry Group, Ph.D. Thesis, University of Cambridge (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bone, R.G.A. (1995). Generalizing the Molecular Symmetry Group of Longuet-Higgins to Asymmetric Tunnelling Problems. In: Smeyers, Y.G. (eds) Structure and Dynamics of Non-Rigid Molecular Systems. Topics in Molecular Organization and Engineering, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1066-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1066-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4464-6

  • Online ISBN: 978-94-011-1066-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics