Skip to main content

Minimal Generator Basis of a Finite Structural Opening

  • Chapter

Part of the Computational Imaging and Vision book series (CIVI,volume 2)

Abstract

In a pseudo-ring structure of the power space where the “max” plays the role of the addition and the Minkowski sum the role of the multiplication, all idealoids are invariance domain of an algebraic opening which is translation invariant. Since a finite structural opening is completely characterized by its invariance domain, the purpose of this paper is to find a “minimal generator basis” of a subset which is closed under union and translation, and which is the invariance domain of a finite structural opening, i.e. a minimal generator basis of the associated idealoid.

Key words

  • Dioid
  • idealoid
  • algebraic opening
  • structural opening
  • invariance domain
  • generator basis
  • prime set

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-1040-2_9
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-94-011-1040-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-P. Aubin. Morphological and Mutational Analysis, Tools for Shape Regulation and Optimization. Commett Matari Programme, CEREMADE, University of Paris-Dauphine, France, 1993.

    Google Scholar 

  2. F. Baccelli, G. Cohen, G. Olsder and J.-P. Quadrat. Synchronization and linearity. Wiley, 1992.

    Google Scholar 

  3. G.F. Banon and J. Barrera. Minimal representations for translation-invariant set mappings by mathematical morphology. SIAM J. Appl. Math., 51(6):1782–1798, december 1991.

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. G.F. Banon and J. Barrera. Decomposition of mappings between complete lattices by mathematical morphology, Part I. General lattices. Signal Processing,30:299–327, 1993.

    MATH  CrossRef  Google Scholar 

  5. N. Bourbaki. Algèbre I. Chapitres 1 à 3. Éléments de mathématique. Hermann, 1970.

    Google Scholar 

  6. S. Eilenberg. Automata, Languages and Machines, vol. A. Academic Press, 1974.

    Google Scholar 

  7. S. Gaubert. Théorie des systèmes linéaires dans les dioïdes. Thèse de docteur en mathématique et automatique, École Nationale Supérieure des Mines de Paris, 1992.

    Google Scholar 

  8. S. Gaubert. Introduction aux systèmes dynamiques à événements discrets. Notes de cours, ENSTA, 1994.

    Google Scholar 

  9. H.J.A.M. Heijmans. Morphological Image Operators. Academic Press, 1994.

    Google Scholar 

  10. H.J.A.M. Heijmans and C. Ronse. The Algebraic Basis of Mathematical Morphology: I. Dilatations and Erosions. Computer Vison, Graphics, and Image Processing, 50:245–295, 1990.

    MATH  CrossRef  Google Scholar 

  11. S. Lang Algebra. Addisson-Wesley, 1974.

    MATH  Google Scholar 

  12. S. Mac Lane and G. Birkhoff. Algèbre: Structures fondamentales, vol. I. Gauthier-Villars, 1970.

    Google Scholar 

  13. S. Mac Lane and G. Birkhoff. Algèbre: Les grands théorèmes, vol. II. Gauthier-Villars, 1971.

    Google Scholar 

  14. P.Maragos. A Representation Theory for Morphological Image and Signal Processing. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 11(6):586–599, june 1989.

    MATH  CrossRef  Google Scholar 

  15. P. Maragos and R.W. Schafer. Morphological filters-part I: their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(8):1153–1169, August 1987.

    MathSciNet  CrossRef  Google Scholar 

  16. G. Matheron. Random Sets and Integral Geometry. John Wiley and Sons, New York, 1975.

    MATH  Google Scholar 

  17. G. Matheron. Filters and lattices. Technical Report 851, CGMM, École des Mines, September 1983.

    Google Scholar 

  18. G. Matheron. Filters and lattices. In J. Serra, editor, Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances. Academic Press, London, 1988.

    Google Scholar 

  19. G. Matheron. Les treillis compacts. Technical Report N-23/90/G, Centre de Géostatistique, École des Mines de Paris, Novembre 1990.

    Google Scholar 

  20. J. Mattioli. Domaine d’invariance d’une ouverture algébrique invariante par translation. Technical Report PER-94–2, L.C.R. Thomson-CSF, Orsay, France. 1994.

    Google Scholar 

  21. C. Ronse. Lattice-Theorical Fixpoint Theorems in Morphological Image Filtering. Journal of Mathematical Imaging and Vision, 4(1):19–42, january 1994.

    MathSciNet  MATH  CrossRef  Google Scholar 

  22. C. Ronse and H.J.A.M. Heijmans. The Algebraic Basis of Mathematical Morphology: II. Openings and Closings. Computer Vison, Graphics, and Image Processing, 54(1):74–97, july 1991.

    MATH  Google Scholar 

  23. M. Schmitt and J. Mattioli Morphologie Mathématique. Masson, Paris, 1994.

    Google Scholar 

  24. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.

    Google Scholar 

  25. J. Serra, editor. Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances. Academic Press, 1988.

    Google Scholar 

  26. J. Serra and L. Vincent. An overview of morphological filtering. Circuits, Systems and Signal Processing, 11(1):47–108, january 1992.

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mattioli, J. (1994). Minimal Generator Basis of a Finite Structural Opening. In: Serra, J., Soille, P. (eds) Mathematical Morphology and Its Applications to Image Processing. Computational Imaging and Vision, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1040-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1040-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4453-0

  • Online ISBN: 978-94-011-1040-2

  • eBook Packages: Springer Book Archive