J.-P. Aubin. Morphological and Mutational Analysis, Tools for Shape Regulation and Optimization. Commett Matari Programme, CEREMADE, University of Paris-Dauphine, France, 1993.
Google Scholar
F. Baccelli, G. Cohen, G. Olsder and J.-P. Quadrat. Synchronization and linearity. Wiley, 1992.
Google Scholar
G.F. Banon and J. Barrera. Minimal representations for translation-invariant set mappings by mathematical morphology. SIAM J. Appl. Math., 51(6):1782–1798, december 1991.
MathSciNet
MATH
CrossRef
Google Scholar
G.F. Banon and J. Barrera. Decomposition of mappings between complete lattices by mathematical morphology, Part I. General lattices. Signal Processing,30:299–327, 1993.
MATH
CrossRef
Google Scholar
N. Bourbaki. Algèbre I. Chapitres 1 à 3. Éléments de mathématique. Hermann, 1970.
Google Scholar
S. Eilenberg. Automata, Languages and Machines, vol. A. Academic Press, 1974.
Google Scholar
S. Gaubert. Théorie des systèmes linéaires dans les dioïdes. Thèse de docteur en mathématique et automatique, École Nationale Supérieure des Mines de Paris, 1992.
Google Scholar
S. Gaubert. Introduction aux systèmes dynamiques à événements discrets. Notes de cours, ENSTA, 1994.
Google Scholar
H.J.A.M. Heijmans. Morphological Image Operators. Academic Press, 1994.
Google Scholar
H.J.A.M. Heijmans and C. Ronse. The Algebraic Basis of Mathematical Morphology: I. Dilatations and Erosions. Computer Vison, Graphics, and Image Processing, 50:245–295, 1990.
MATH
CrossRef
Google Scholar
S. Lang Algebra. Addisson-Wesley, 1974.
MATH
Google Scholar
S. Mac Lane and G. Birkhoff. Algèbre: Structures fondamentales, vol. I. Gauthier-Villars, 1970.
Google Scholar
S. Mac Lane and G. Birkhoff. Algèbre: Les grands théorèmes, vol. II. Gauthier-Villars, 1971.
Google Scholar
P.Maragos. A Representation Theory for Morphological Image and Signal Processing. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 11(6):586–599, june 1989.
MATH
CrossRef
Google Scholar
P. Maragos and R.W. Schafer. Morphological filters-part I: their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(8):1153–1169, August 1987.
MathSciNet
CrossRef
Google Scholar
G. Matheron. Random Sets and Integral Geometry. John Wiley and Sons, New York, 1975.
MATH
Google Scholar
G. Matheron. Filters and lattices. Technical Report 851, CGMM, École des Mines, September 1983.
Google Scholar
G. Matheron. Filters and lattices. In J. Serra, editor, Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances. Academic Press, London, 1988.
Google Scholar
G. Matheron. Les treillis compacts. Technical Report N-23/90/G, Centre de Géostatistique, École des Mines de Paris, Novembre 1990.
Google Scholar
J. Mattioli. Domaine d’invariance d’une ouverture algébrique invariante par translation. Technical Report PER-94–2, L.C.R. Thomson-CSF, Orsay, France. 1994.
Google Scholar
C. Ronse. Lattice-Theorical Fixpoint Theorems in Morphological Image Filtering. Journal of Mathematical Imaging and Vision, 4(1):19–42, january 1994.
MathSciNet
MATH
CrossRef
Google Scholar
C. Ronse and H.J.A.M. Heijmans. The Algebraic Basis of Mathematical Morphology: II. Openings and Closings. Computer Vison, Graphics, and Image Processing, 54(1):74–97, july 1991.
MATH
Google Scholar
M. Schmitt and J. Mattioli Morphologie Mathématique. Masson, Paris, 1994.
Google Scholar
J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.
Google Scholar
J. Serra, editor. Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances. Academic Press, 1988.
Google Scholar
J. Serra and L. Vincent. An overview of morphological filtering. Circuits, Systems and Signal Processing, 11(1):47–108, january 1992.
MathSciNet
MATH
CrossRef
Google Scholar