Skip to main content

Monte Carlo Estimation of Morphological Granulometric Discrete Size Distributions

  • Chapter
Mathematical Morphology and Its Applications to Image Processing

Part of the book series: Computational Imaging and Vision ((CIVI,volume 2))

Abstract

Morphological granulometries are frequently used as descriptors of granularity, or texture, within a binary image. In this paper, we study the problem of estimating the (discrete) size distribution and size density of a random binary image by means of empirical, as well as, Monte Carlo estimators. Theoretical and experimental results demonstrate superiority of the Monte Carlo estimation approach, and suitability of mathematical morphology in studying important properties of a particular binary random image model, widely known as a Markov random field model.

This work has been supported by the office of Naval Research, Mathematical, Computer, and Information Sciences Division, under ONR Grant N00014-90–1345.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Matheron, Random Sets and Integral Geometry. New York: Wiley, 1975.

    MATH  Google Scholar 

  2. J. Serra, Image Analysis and Mathematical Morphology. London: Academic Press, 1982.

    MATH  Google Scholar 

  3. P. Maragos, “Pattern spectrum and multiscale shape representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,vol. 11, pp. 701–716, 1989.

    Article  MATH  Google Scholar 

  4. D. Schonfeld, and J. Goutsias, “Optimal morphological pattern restoration from noisy binary images,” IEEE Transactions on Pattern Analysis and Machine Intelligence,vol. 13, pp. 14–29, 1991.

    Article  Google Scholar 

  5. R. M. Haralick, “Model-based morphology: Simple and complex shapes,” In Visual Form: Analysis and Recognition, C. Arcelli, L. P. Cordella, and G. Sanniti di Baja, Eds., pp. 275–285. New York: Plenum Press, 1992.

    Google Scholar 

  6. E. R. Dougherty, R. M. Haralick, Y. Chen, C. Agerskov, U. Jacobi, and P. H. Sloth, “Estimation of optimal morphological T-opening parameters based on independent observation of signal and noise pattern spectra,” Signal Processing, vol. 29, pp. 265–281, 1992.

    Article  MATH  Google Scholar 

  7. E. R. Dougherty, and J. B. Pelz, “Morphological granulometric analysis of electrophotographic images—Size distribution statistics for process control,”Optical Engineering, vol. 30, pp. 438–445, 1991.

    Article  Google Scholar 

  8. E. R. Dougherty, J. B. Pelz, F. Sand, and A. Lent, “Morphological image segmentation by local granulometric size distributions,”Journal of Electronic Imaging, vol. 1, pp. 46–60, 1992.

    Article  Google Scholar 

  9. E. R. Dougherty, J. T. Newell, and J. B. Pelz, “Morphological texture-based maximum-likelihood pixel classification based on local granulometric moments,” Pattern Recognition, vol. 25, pp. 1181–1198, 1992.

    Article  Google Scholar 

  10. S. Archambault, and M. Moore, “Statistiques morphologiques pour l’ajustement d’images,” International Statistical Review, vol. 61, pp. 283–297, 1993.

    Article  MATH  Google Scholar 

  11. J. Goutsias, “Morphological analysis of discrete random shapes,” Journal of Mathematical Imaging and Vision, vol. 2, pp. 193–215, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Sand, and E. R. Dougherty, “Asymptotic normality of the morphological pattern-spectrum moments and orthogonal granulometric generators,” Journal of Visual Communication and Image Representation,vol. 3, pp. 203–214, 1992.

    Article  Google Scholar 

  13. B. Bettoli, and E. R. Dougherty, “Linear granulometric moments of noisy binary images,” Journal of Mathematical Imaging and Vision, vol. 3, pp. 299–319, 1993.

    Article  MATH  Google Scholar 

  14. M. Moore, and S. Archambault, “On the asymptotic behavior of some statistics based on morphological operations.” In Spatial Statistics and Imaging, A. Possolo, Ed., vol. 20, pp. 258–274. Hayward, California: Institute of Mathematical Statistics, Lecture Notes—Monograph Series, 1991.

    Chapter  Google Scholar 

  15. J. Besag, and P. J. Green, “Spatial statistics and Bayesian computation,” Journal of the Royal Statistical Society, Series B, vol. 55, pp. 25–37, 1993.

    MathSciNet  MATH  Google Scholar 

  16. K. G. Wilson, “Problems in physics with many scales of length,” Scientific American, vol. 24, pp. 158–177, 1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sivakumar, K., Goutsias, J. (1994). Monte Carlo Estimation of Morphological Granulometric Discrete Size Distributions. In: Serra, J., Soille, P. (eds) Mathematical Morphology and Its Applications to Image Processing. Computational Imaging and Vision, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1040-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1040-2_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4453-0

  • Online ISBN: 978-94-011-1040-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics