Krypton-85, a Minor Greenhouse Gas Precursor

  • W. R. A. Goossens
  • J. B. H. F. van Rensbergen

Abstract

Gaseous waste at nuclear facilities is quantitatively collected for intense treatment by applying a multiple confinement (Goossens et al., 1991). The gas treatment techniques are optimised to keep the environmental impact As Low As Reasonably Achievable (ALARA) under normal and accidental operating conditions within economic and health constraints. The practice for airborne waste treatment in the nuclear fuel cycle has been assessed on its global merits (Goossens et al., 1992). It appears that Krypton-85 is the most important airborne isotope for the global atmosphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baetslé, L.H.: 1992, ‘Role and Influence of Partition and Transmutation on the Management of Nuclear Waste Streams’, OECD-NEA, restricted report.Google Scholar
  2. Chatterjee, A.: 1987, ‘Interaction of ionising Radiation with Matter’, p. 1–61, in the book Radiation Chemistry — Principles and Applications, Farhastazis, Rodges Michael, A.J., editors, VCH Publishers, New York.Google Scholar
  3. Eggermont, G.X., Buysse, J., Berkvens, P. and Raes, F.:1986, ‘Atmospheric Concentration Measurements of Kr-85’, A tool for Ecological Standards, Proceeding Eur. IPPA Congress, Salzburg, published 1988.Google Scholar
  4. Feister, U. and Balzer, K.,:1990, ‘Surface Ozone and Meteorological Predictors on a Subregional Scale’, Atmospheric Environment 25A (9), 1781–1790.Google Scholar
  5. Goossens, W.R.A., Eichholz, G.G. and Tedder D.W.: 1991, ‘Treatment of Gaseous Effluents at Nuclear Facilities’, Radioactive Waste Management Handbook, Vol. 2, Harwood Academic Publishers, ChurGoogle Scholar
  6. Goossens, W.R.A. and Van Rensbergen, J.B.H.F.: 1992, ‘Global Change and the Practice for Airborne Waste Treatment’, 22nd DOE/NCR Nuclear Air Cleaning and Treatment Conference, Denver.Google Scholar
  7. Govaerts, P. and Sohier, A.: 1992, personal communication.Google Scholar
  8. IAEA: 1992, ‘IAEA World Survey Results’, Europe Energy 377, II4–6Google Scholar
  9. ICRP: 1983, ‘Radionuclide Transformations — Energy and Intensity of emissions’, Report of a Task Group of Committee 2 of the ICRP, ICRP Publication 38, Pergamon Press, Oxford.Google Scholar
  10. Kollert, R. and Bitzin, M.: 1989, ‘Climatic Aspects of Radioactive Gases, in Particular Krypton-85’, Kollert-Donderer, Bremen.Google Scholar
  11. Kühn, W.: 1985, ‚Zur Ionisation der bodennahen Luft durch Krypton-85 aus Wiederaufarbeitungsanalagen‘, Atomkemenergie, Kerntechnik 47 (3), 203–204.Google Scholar
  12. Miller, A.J., Nagatani, R.M., Tiao, G.C., Niu X.F., Reinsel, G.C., Wuebbles, D. and Grant, K.: 1992, ‘Comparisons of Observed Ozone and Temperature Trends in the Lower Stratosphere’, Geophysical Research Letters 19 (9), 929–932.CrossRefGoogle Scholar
  13. NRCP: 1975, ‘Krypton-85 in the Atmosphere’, NCRP, Report 44Google Scholar
  14. Pannetier, R.: 1968, ‘Distribution, Transfert Atmosphérique et Bilan du Krypton-85’, CEA-R-3591.Google Scholar
  15. Pannetier, R.: 1970, ‘Original Use of the Radioactive Tracer Gas Krypton-85 to Study the Meridian Atmospheric Flow’, Journal of Geophysical Research 75 (15), 2985–2989.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • W. R. A. Goossens
    • 1
  • J. B. H. F. van Rensbergen
    • 1
  1. 1.Flemish Institute for Technological ResearchMolBelgium

Personalised recommendations