Skip to main content

Somatic Embryogenesis in Scots Pine (Pinus sylvestris L.)

  • Chapter

Part of the book series: Forestry Sciences ((FOSC,volume 44-46))

Abstract

Scots pine (Pinus sylvestris L.) is an important source of timber in Northern Eurasia and it is also used in paper industry. In the northern United States and Canada, it is used mainly for Christmas trees and landscape plantings. It has been planted on a large scale for centuries in France, Germany and Czechoslovakia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronen, T. & H. Häggman, 1992. Gene transfer to Scots pine. Physiol. Plant. 85: A2 (abstract).

    Article  Google Scholar 

  • Aronen, T., H. Häggman & A. Hohtola, 1994. Transient GUS expression in Scots pine tissues derived from mature trees. Can. J. Bot. In press.

    Google Scholar 

  • Auger, M.A., C. Bastien, C. Geri & C. Jay-Allemand, 1991. Foliage edibility of different Scots pine clones for Diprion pini L. (Hym., Diprionidae). III. Prospects for a genetic improvement of Pinus sylvestris. J. Appl. Ent. 111: 270–277.

    Article  Google Scholar 

  • Balenger, L.D. & F.H. Huang, 1984. Rooting of cuttings from mature Scotch pine trees. Arkansas Farm Res. 33: 7.

    Google Scholar 

  • Becwar, M.R., R. Nagmani & S.R. Wann, 1990. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can. J. For. Res. 20: 810–817.

    Article  Google Scholar 

  • Becwar, M.R., T.D. Blush, D.W. Brown & E.E. Chesick, 1991. Multiple paternal genotypes in embryogenic tissue derived from individual immature loblolly pine seeds. Plant Cell Tiss. Org. Cult. 26: 37–44.

    Article  Google Scholar 

  • Bennett, H.S., A.D. Wyrick, S.W. Lee & H.J. McNiel Jr., 1976. Science and art in preparing tissues embedded in plastic for light microscopy, with special reference to glycol methacrylate, glass knives and simple stains. Stain Tecnol. 51: 71–97.

    CAS  Google Scholar 

  • Bergman, L., S. von Arnold & T. Eriksson, 1985. Effects of N6-benzyladenine on shoots of five willow clones (Salix spp.) cultured in vitro. Plant Cell Tiss. Org. Cult. 4: 135–144.

    Article  Google Scholar 

  • Bonga, J.M., 1987. Clonal propagation of mature trees: problems and possible solutions. In: J.M. Bonga & D.J. Durzan (Eds). Cell and tissue culture in forestry, vol. 1, pp. 249–271. Martinus Nijhoff Publishers. Dordrecht, Boston, Lancaster.

    Google Scholar 

  • Bornman, C.H. & E. Jansson, 1980. Organogenesis in cultured Pinus sylvestris tissue. Z. Pflanzenphysiol. 96: 1–6.

    CAS  Google Scholar 

  • Chalupa, V., 1989. Micropropagation of Larix decidua Mill. and Pinus sylvestris L. Biol. Plant. 31: 400–407.

    Article  Google Scholar 

  • Chalupa, V. & D.J. Durzan, 1973. Growth and development of resting buds of conifers in vitro. Can. J. For. Res. 3: 196–208.

    Article  CAS  Google Scholar 

  • Chandler, S.F., C. Bateman, C. Blomstedt, D. Willyams & R. Young, 1989. Forestry Biotechnology at Calgene Pacific. Aust. J. Biotechnol. 3: 281–284.

    Google Scholar 

  • Chavez, V.M., R.E. Litz, P.A. Moon & K. Norstog, 1992. Somatic embryogenesis from leaf callus of mature plants of the gymnosperm Ceratozamia mexicana var. robusta (Miq.) Dyer (Cycadales). In vitro Cell. Dev. Biol. 28P: 59–63.

    CAS  Google Scholar 

  • Dukharev, V.A., I.I. Korshikov, S.M. Ryabokon & A.A. Kotova, 1992. Genetic differentiation of Scots pine subpopulations affected by industrial pollution. Tsitol. Genet. 26: 7–111.

    Google Scholar 

  • Finer, J.J., H.B. Kriebel & M.R. Becwar, 1989. Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.). Plant Cell Rep. 8: 203–206.

    Article  Google Scholar 

  • Glomb, V., P. Artner & J. Sequens, 1991. Injections of chemical preparations to stimulate resin production in trees. Lesnictvi. 37: 327–332.

    CAS  Google Scholar 

  • Gupta, P.K. & D.J. Durzan, 1985. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 4: 177–179.

    Article  CAS  Google Scholar 

  • Gupta, P.K. & D.J. Durzan, 1986. Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio/Technology 4: 643–645.

    Article  Google Scholar 

  • Gupta, P.K. & D.J. Durzan, 1987. Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine. Bio/Technology 5: 147–151.

    Article  Google Scholar 

  • Hackett, W.P., 1985. Juvenility, maturation, and rejuvenation in woody plants. Hort. Rev. 7: 109–155.

    Google Scholar 

  • Hohtola, A., 1988. Seasonal changes in expiant viability and contamination of tissue cultures from mature Scots pine. Plant Cell Tiss. Org. Cult. 15: 211–222.

    Article  Google Scholar 

  • Hohtola, A. & A.P. Kvist, 1991. Preparation of protoplasts from callus derived from buds of mature Scots pine and subsequent induction of cell proliferation. Tree Physiol. 8: 423–428.

    Article  Google Scholar 

  • Holopainen, J.K., 1990. The relationship between multiple leaders and mechanical and frost damage to the apical meristem of Scots pine seedlings. Can. J. For. Res. 20: 280–284.

    Article  Google Scholar 

  • Huss, E., 1967. Long-term storage of conifer seed. Studia For. Suec. 46: 1–59.

    Google Scholar 

  • Jain, S.M., R.J. Newton & E.J. Soltes, 1988. Induction of adventitious buds and plantlet regeneration in Pinus sylvestris L. Curr. Sci. 57: 677–679.

    Google Scholar 

  • Jain, S.M., N. Dong & R.J. Newton, 1989. Somatic embryogenesis in slash pine (Pinus elliottii) from immature embryos cultured in vitro. Plant Sci. 65: 233–241.

    Article  Google Scholar 

  • Jalonen, P. & S. von Arnold, 1991. Characterization of embryogenic cell lines of Picea abies in relation to their competence for maturation. Plant Cell Rep. 10: 384–387.

    Article  Google Scholar 

  • Keinonen-Mettälä, K., P. Eurola & K. von Weissenberg, 1992. Towards somatic embryogenesis of Scots pine (Pinus sylvestris). International Conifer Biotechnology Working Group, Radis-son Governors Inn, NC, April 23–28, 1992 (abstract).

    Google Scholar 

  • Kellomäki, S. & M. Kolström, 1992. Simulation of tree species composition and organic matter accumulation in Finnish boreal forests under changing climatic conditions. Vegetatio. 102: 47–68.

    Article  Google Scholar 

  • King, J.P., 1965. Seed source x environment interactions in Scotch pine, I. Height growth. Silvae Genet. 14: 105–115.

    Google Scholar 

  • Koski, V., 1980. On the variation of flowering and seed crop in mature stands of Pinus sylvestris L. Silva Fenn. 14: 71–75.

    Google Scholar 

  • Krogstrup, P., 1986. Embryolike structures from cotyledons and ripe embryos of Norway spruce. Can. J. For. Res. 16: 664–668.

    Article  Google Scholar 

  • Kupila-Ahvenniemi, S., 1985. Wintertime changes in the fine structure and the ribosome content of the buds of Scots pine. In: Å. Kaurin, O. Junttila & J. Nilsen (Eds). Plant production in the north, pp. 171–180. Norwegian University Press, Tromsö, Bergen, Oslo.

    Google Scholar 

  • Kuuluvainen, T. & M. Kanninen, 1992. Patterns in aboveground carbon allocation and tree architecture that favour stem growth in young Scots pine from high latitudes. Tree Physiol. 10: 69–80.

    Article  PubMed  Google Scholar 

  • Lähde, E., 1975. The size of pine cones, seed crop and seed quality in Northern Finland. Commun. Inst. For. Fenn. 86: 1–23.

    Google Scholar 

  • Lainé, E. & A. David, 1990. Somatic embryogenesis in immature embryos and protoplasts of Pinus caribaea. Plant Sci. 69: 215–224.

    Article  Google Scholar 

  • Lindfors, A., H. Kuusela, A. Hohtola & S. Kupila-Ahvenniemi, 1990. Molecular correlates of tissue browning and deterioration in Scots pine calli. Biol. Plant. 32: 171–180.

    Article  CAS  Google Scholar 

  • Lloyd, G. & B. McCown, 1980. Commercially-feasible micropropagation of Mountain Laurel, Kalmia latifolia by use of shoot tip culture. Proc. Int. Plant Propagators Soc. 30: 421–427.

    Google Scholar 

  • Mejnartowicz, L.E., 1983. Changes in genetic structure of Scots pine (Pinus silvestris L.) population affected by industrial emission of fluoride and sulphur dioxide. Genet. Polonica 24: 41–50.

    CAS  Google Scholar 

  • Murashige, T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Neale, D. & R. Sederoff, 1991. Genome mapping in pines takes shape. Probe 1: 1–3.

    Google Scholar 

  • Park, Y.S. & H.D. Gerhold, 1986. Population hybridization in Scotch pine (Pinus sylvestris L.): I. Genetic variance components and heterosis. Silvae Genet. 35: 159–165.

    Google Scholar 

  • Repo, T., 1992. Seasonal changes of frost hardiness in Picea abies and Pinus sylvestris in Finland. Can. J. For. Res. 22: 1949–1957.

    Article  Google Scholar 

  • Romanovskii, M.G., 1992. Seed deficiency in pine trees growing near motor-roads. Lesovedenie. 2: 71–74.

    Google Scholar 

  • Ryynänen, L., 1980. Storage of Scots pine seed and seed ageing. Folia For. 428: 1–11.

    Google Scholar 

  • Sakai, A., 1983. Comparative study on freezing resistance of conifers with special reference to cold adaptation and its evolutive aspects. Can. J. Bot. 61: 2323–2332.

    Article  Google Scholar 

  • Salajová, T. & J. Salaj, 1992. Somatic embryogenesis in European black pine (Pinus nigra Arn.). Biol. Plant. 34: 213–218.

    Article  Google Scholar 

  • Salonen, M., S. Salonen, S. Vanhakoski & M. Lepistö, 1988. Rooting of conifer microcuttings produced using benzylaminopurine spraying treatments under greenhouse conditions. Physiol. Plant. 73: 11A (abstract).

    Google Scholar 

  • Sarvas, R., 1962. Investigations on the flowering and seed crop of Pinus silvestris. Comm. Inst. Forest. Fenn. 53: 1–198.

    Google Scholar 

  • Schenk, R.V. & A.C. Hildebrandt, 1972. Medium and techniques for induction and growth of monocolyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50: 199–204.

    Article  CAS  Google Scholar 

  • Simola, L., 1974. Ultrastructural changes in the seeds of Pinus sylvestris L. during senescence. Studia For. Suec. 119: 1–22.

    Google Scholar 

  • Skripachenko, V.V., 1982. in vitro cultivation of tissues from seedlings of the three species of pine. Sov. Plant Physiol. 29:162–167.

    Google Scholar 

  • Sommer, H.E., C.L. Brown & P.P. Kormanik, 1975. Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot. Gaz. 136: 196–200.

    Article  Google Scholar 

  • Toribio, M. & J.A. Pardos, 1981. In vitro organogenesis of Pinus sylvestris L. tissues. Afocel 14: 143–148.

    Google Scholar 

  • Toribio, M. & J.A. Pardos, 1989. Scots pine (Pinus sylvestris L.). In: Y.P.S. Bajaj (Ed). Biotechnology in agriculture and forestry, vol 5. Trees II. pp. 479–506. Springer-Verlag. Berlin, Heidelberg.

    Google Scholar 

  • von Arnold, S. & T. Eriksson, 1981. In vitro studies of adventitious shoot formation in Pinus contorta. Can. J. Bot. 59: 870–874.

    Article  Google Scholar 

  • Whetten, R. & R. Sederoff, 1991. Genetic engineering of wood. For. Ecol. Manage. 43: 301–316.

    Article  Google Scholar 

  • Whitehill, S.J. & W.W. Schwabe, 1975. Vegetative propagation of Pinus sylvestris. Physiol. Plant. 35: 66–71.

    Article  CAS  Google Scholar 

  • Wingsle, G. & J.E. Hällgren, 1993. Influence of SO2 and NO2 exposure on glutathione, superoxide dismutase and glutathione reductase activities in Scots pine needles. J. Exp. Bot. 44: 463–470.

    Article  CAS  Google Scholar 

  • Wright, J.W. & W.I. Bull, 1963. Geographic variations in Scotch pine. Silvae Genet. 12: 1–25.

    Google Scholar 

  • Žel, J., N. Gogala & M. Camloh, 1988. Micropropagation of Pinus sylvestris. Plant Cell Tiss. Org. Cult. 14: 169–175.

    Article  Google Scholar 

  • Zimmermann, R.H., 1972. Juvenility and flowering in woody plants: A review. HortSci. 7: 447–455.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hohtola, A. (1995). Somatic Embryogenesis in Scots Pine (Pinus sylvestris L.). In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 44-46. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0960-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0960-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4415-8

  • Online ISBN: 978-94-011-0960-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics