Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 98))

Abstract

Sedimentary bacteria have generally been recognized as an essential food for protists and invertebrates, forming the base of benthic food webs. This trophic role has been well documented, but bacteria play an equally important role as mineralizers of organic detritus and recyclers of essential nutrients. Recent evidence suggests that this latter role is more important than their trophic function in tropical mangrove and coastal sediments. Bacteria in these systems are, on average, more abundant and productive than their counterparts in higher-latitude systems. They account for a disproportionate share of nutrient uptake to the extent that bacterial communities act as a sink for carbon, processing most of the energy and nutrients in tropical aquatic systems. Most bacteria remain unconsumed in tropical deposits, dying naturally and lysing, with the next generation of cells consuming, mineralizing and recycling this material either into new biomass or dissolved material. Bacteria in tropical aquatic sediments are ultimately controlled by inputs of dissolved and particulate detritus, natural mortality and recycling. To replenish damaged ecosystems in the tropics, restoration of the natural geochemical profile in the sediments is necessary to re-initiate the growth of bacteria in order to restore the essential recycling processes which assist in the conservation of nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, J. Y. & R. C. Alter, 1986. General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Cont. Shelf Res 6: 291–310.

    Article  Google Scholar 

  • Alongi, D. M., 1988a. Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb. Ecol. 15: 59–79.

    Article  Google Scholar 

  • Alongi, D. M., 1988b. Microbial-meiofaunal interrelationships in some tropical intertidal sediments. J. Mar. Res. 46: 349–365.

    Article  CAS  Google Scholar 

  • Alongi, D. M., 1989a. Benthic processes across mixed terrigenous-carbonate sedimentary facies on the central Great Barrier Reef continental shelf. Cont. Shelf Res. 9: 629–663.

    Article  Google Scholar 

  • Alongi, D. M., 1989b. The fate of bacterial biomass and production in marine benthic food chains. In: Hattori, T., Ishida, Y., Maruyama, Y., Molita, R. Y., Uchida, A. (eds), Recent Advances in Microbial Ecology, Japanese Scientific Societies Press, Tokyo: 353–359.

    Google Scholar 

  • Alongi, D. M., 1990. The ecology of tropical soft-bottom benthic ecosystems. Oceanogr. Mar. Biol. Annu. Rev. 28: 381–496.

    Google Scholar 

  • Alongi, D. M., 1991. The role of intertidal mudbanks in the diagenesis and export of dissolved and particulate materials from the Fly Delta, Papua New Guinea. J. exp. Mar. Biol. Ecol. 149: 81–107.

    Article  Google Scholar 

  • Alongi, D. M., 1992. Vertical profiles of bacterial abundance, productivity and growth rates in coastal sediments of the central Great Barrier Reef lagoon. Mar. Biol. 112: 657–663.

    Article  Google Scholar 

  • Alongi, D. M., K. G. Boto & F. Tirendi, 1989. Effect of exported mangrove litter on bacterial productivity and dissolved organic carbon fluxes in adjacent tropical nearshore sediments. Mar. Ecol. Prog. Ser. 56: 129–140.

    Article  Google Scholar 

  • Alongi, D. M., P. Christoffersen, F. Tirendi & A. I. Robertson,1992. The influence of freshwater and material export on sedimentary facies and benthic processes within the Fly Delta and adjacent Gulf of Papua (Papua New Guinea). Cont. Shelf Res. 12: 287–326.

    Article  Google Scholar 

  • Ayyakkannu, K. & D. Chandramohan, 1971. Occurrence and distribution of phosphate solubilizing bacteria and phos-phatose in marine sediments at Porto Novo. Mar. Biol. 11: 201–210.

    Article  CAS  Google Scholar 

  • Blackburn, T. H., 1988. Benthic mineralization and bacterial production In: Blackburn, T. H., Sorensen, J. (eds), Nitrogen Cycling in Coastal Marine Environments, Wiley & Sons, Chichester. 175–190.

    Google Scholar 

  • Blackburn, T. H., D. Christensen, A. M. Fanger, K. Henriksen, H. Iiyumi, N. Iversen & P. Limpsaichol, 1987. Mineralization processes in mangrove and seagrass sediments. In: Hylleberg, J. (ed.), Ao Yon -a mangrove in the Andaman Sea. Institute of Ecology & Genetics, University of Aarkus, Denmark: 22–32.

    Google Scholar 

  • Boto, K. G., D. M. Alongi & A. L. J. Nott, 1989. Dissolved organic carbon-bacteria interactions at sediment-water interface in a tropical mangrove system. Mar. Ecol. Prog. Ser. 51: 243–251.

    Article  CAS  Google Scholar 

  • Boto, K. G. & J. T. Wellington, 1983. Phosphorus and nitrogen nutritional status of a northern Australian mangrove forest. Mar. Ecol. Prog. Ser. 11: 63–69.

    Article  Google Scholar 

  • Christian, R. R. & W. J. Wiebe, 1979. Three experimental regimes in the study of sediment microbial ecology. In: C. D. Litchfteld, P. L. Seyfried (eds), Methodology for Biomass Determinations and Microbial Activities in Sediments, Am. Soc. Test. Materials: 148–155.

    Chapter  Google Scholar 

  • Clough, B. F., 1988. Conservation and utilisation of mangrove resources. Galaxea 7: 287–296.

    Google Scholar 

  • Ducklow, H. W., 1990. The biomass, production and fate of bacteria in coral reefs. In: Dubinsky, Z. (ed.) Coral Reefs, Elsevier Sci. Publ., Amsterdam: 265–289.

    Google Scholar 

  • Dye, A. H., 1983. A method for the quantitative estimation of bacteria from mangrove sediments. Estuar. coast. Shelf Sci. 17: 207–215.

    Article  Google Scholar 

  • Findlay, R. H., M. B. Trexler, J. B. Guckert & D. C. White, 1990a. Laboratory study of disturbance in marine sediments:response of a microbial community. Mar. Ecol. Prog. Ser. 61: 121–133.

    Article  Google Scholar 

  • Findlay, R. H., M. B. Trexler & D. C. White, 1990b. Response of a benthic microbial community to biotic disturbance. Mar. Ecol. Prog. Ser. 62: 135–148.

    Article  Google Scholar 

  • Furtado,J. I., W. B. Morgan, J. R. Pfafflin & K. Ruddle, (eds) 1990. Tropical Resources: Ecology and Development. Har-wood Academic Publ., Chur, 306 pp.

    Google Scholar 

  • Gerlach, S. A., 1978. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity Oecologia 33: 55–69.

    Article  Google Scholar 

  • Hansen, J. A., D. M. Alongi, D. J. W. Moriarty & P. C. Pollard, 1987. The dynamics of benthic microbial communities at Davies Reef, Central Great Barrier Reef, Coral Reefs 6: 63–70.

    Article  Google Scholar 

  • Hatcher, B. G., R. E. Johannes & A. I. Robertson, 1989. Review of research relevant to the conservation of shallow tropical marine ecosystems. Oceanogr. Mar. Biol. annu. Rev. 27: 337–414.

    Google Scholar 

  • Herndl, G. J., J. Fagareli, N. Fanuko, P. Peduzzi & V. Turk, 1987. Role of bacteria in the carbon and nitrogen flow between water-column and sediment in a shallow marine bay (Bay of Piran, Northern Adriatic Sea). P.S.Z.N.I. Mar. Ecol. 8: 221–236.

    Article  CAS  Google Scholar 

  • Hoppe, H. G., K. Gocke. D. Zamorano & R. Zimmerman, 1983. Degradation of macromolecular organic compounds in a tropical lagoon (Cienaga Grande, Colombia) and its ecological significance. Int. Revue ges. Hydrobiol. 68: 811–824.

    Article  CAS  Google Scholar 

  • Kemp, P. F., 1988. Bacterivory by benthic ciliates: significance as a carbon source and impact on sediment bacteria. Mar. Ecol. Prog. Ser 49: 163–169.

    Article  Google Scholar 

  • Kemp, P. F., 1990. The fate of benthic bacterial production. Revue aquat Sci. 2: 109–124.

    Google Scholar 

  • Kristensen, E., F. O. Andersen & L. H. Kofoed, 1988. Preliminary assessment of benthic community metabolism in a south-east Asian mangrove swamp. Mar. Ecol. Prog. Ser. 48: 137–145.

    Article  CAS  Google Scholar 

  • Kristensen, E., M. Holmer & N. Bussarawit, 1991. Benthic metabolism and sulfate reduction in a south-east Asian mangrove swamp. Mar. Ecol. Prog. Ser. 73: 93–103.

    Article  CAS  Google Scholar 

  • Lathwell, D. J. & T. L. Grove, 1986. Soil-plant relationships in the tropics. Annu Rev. Ecol. Syst. 17: 1–16.

    Article  Google Scholar 

  • Lewis, W. M., 1987. Tropical limnology. Annu Rev. Ecol. Syst. 18: 159–184.

    Article  Google Scholar 

  • Matondkar, S. G. P., S. Mahtani & S. Mavinkurve, 1980. Seasonal variations in the microflora from mangrove swamp of Goa. Indian J. mar. Sci. 9: 119–122.

    Google Scholar 

  • Matondkar, S. G. P, S. Mahtani & S. Mavinkurve 1981. Studies on mangrove swamps of Goa. 1. Heterotrophic bacterial flora from mangrove swamps. Mah. Bull. Natl. Inst. Oceanogr. 14: 325–329.

    Google Scholar 

  • Meyer-Reil, L. A., 1984. Bacterial biomass and heterotrophic activity in sediments and overlying waters. In: J. E. Hobbie, P. le B. Williams (eds). Heterotrophic activity in the sea, Plenum Press, N.Y.: 523–546.

    Chapter  Google Scholar 

  • Moriarty, D. J. W., 1983. Bacterial biomass and productivity in sediments, stromatolites, and water of Hamelin Pool, Shark Bay, Western Australia. Geomicrobiol. J. 3: 121–133.

    Article  Google Scholar 

  • Moriarty, D. J. W., 1986a. Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis.Adv. Microb. Ecol. 9: 245–292.

    CAS  Google Scholar 

  • Moriarty, D. J. W., 1986b. Bacterial productivity in ponds used for culture of penaeid prawns. Microb. Ecol. 12: 259–269.

    Article  CAS  Google Scholar 

  • Moriarty, D. J. W., 1989. Relationships of bacterial biomass and production to primary production in marine sediments. In: T. Hattori, Y. Ishida, Y. Maruyama, Y., R. Y. Morita, A. Uchida (eds), Recent Advances in Microbial Ecology, Japanese Scientific Societies Press, Tokyo: 349–354.

    Google Scholar 

  • Moriarty, D. J. W., 1990. Techniques for estimating bacterial growth rates and production of biomass in aquatic environments. In: J. R. Norris, R. Grigorova (eds), Methods in Microbiology, Vol. 22, Academic Press, London: 211–234.

    Google Scholar 

  • Moriarty, D. J. W. & P. C. Pollard, 1982. Diel variation of bacterial productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA. Mar. Biol. 72: 165–173.

    Article  Google Scholar 

  • Moriarty, D. J. W., P. I. Boon, J. A. Hansen, W. G. Hunt, I. R. Poiner, P. C. Pollard, G. W. Skyring & D. C. White, 1985. Microbial biomass and productivity in seagrass beds. Geomicrobiol. J. 4: 21–51.

    Article  PubMed  CAS  Google Scholar 

  • Moriarty, D. J. W., R. Iverson & P. C. Pollard, 1986. Exudation of organic carbon by the seagrass Halodule wrightii and its effect on bacterial growth in the sediment. J. exp. mar. Biol. Ecol. 96: 115–126.

    Article  CAS  Google Scholar 

  • Moriarty, D. J. W., D. G. Roberts & P. C. Pollard, 1990. Primary and bacterial productivity of tropical seagrass communities in the Gulf of Carpentaria, Australia. Mar. Ecol. Prog. Ser. 61: 145–157.

    Article  Google Scholar 

  • Olah, J., V. R. P. Sinha, S. Ayyappan, C. S. Purushothaman & S. Radheyshyam, 1987. Sediment oxygen consumption in tropical undrainable fish ponds. Int. Revue ges. Hydro-biol. 72: 297–305.

    Article  CAS  Google Scholar 

  • Pollard, P. C. & D. J. W. Moriarty, 1991. Organic carbon decomposition,primary and bacterial productivity and sulphate reduction, in tropical seagrass beds of the Gulf of Carpentaria, Australia. Mar. Ecol. Prog. Ser. 69: 149–159.

    Article  CAS  Google Scholar 

  • Ruess, R. W. & S. J. McNaughton, 1987. Grazing and the dynamics of nutrient and energy-regulated microbial processes in the Serengeti grasslands. Oikos 49: 101–110.

    Article  Google Scholar 

  • Short, F. T., W. C. Dennison & D. G. Capone, 1990. Phosphorus-limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Mar. Ecol. Prog. Ser. 62: 169–174.

    Article  Google Scholar 

  • Singh, R. S., A. S. Raghubanshi, R. S. Singh & S. C. Srivastava, 1989. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savannah. Nature 338: 499–500.

    Article  Google Scholar 

  • Singh, R. S., S. C. Srivastava, A. S. Raghubanski, J. S. Singh & S. P. Singh, 1991. Microbial C. N and P in dry tropical Savannah: effects of burning and grazing. J. Appl. Ecol.28: 869–878.

    Article  Google Scholar 

  • Stanley, S. O., K. G. Boto. D. M. Alongi & F. T. Gillan, 1987. Composition and bacterial utilization of free amino acids in tropical mangrove sediments. Mar. Chem. 22: 13–30.

    Article  CAS  Google Scholar 

  • Tenore, K. R., 1988. Nitrogen in benthic food chains. In: Blackburn, T. H., Sorensen, J. (eds). Nitrogen Cycling in Coastal Marine Environments, Wiley & Sons, Chichester: 191–206.

    Google Scholar 

  • Tietjen, J. H. & D. M. Alongi, 1990. Population growth and effects of nematodes on nutrient regeneration and bacteria associated with mangrove detritus from northeastern Queensland (Australia). Mar. Ecol. Prog. Ser. 68: 169–180.

    Article  Google Scholar 

  • Vitousek, P. M. & R. L. Sanford, 1986. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17: 137–167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alongi, D.M. (1994). The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. In: Sasekumar, A., Marshall, N., Macintosh, D.J. (eds) Ecology and Conservation of Southeast Asian Marine and Freshwater Environments including Wetlands. Developments in Hydrobiology, vol 98. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0958-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0958-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4414-1

  • Online ISBN: 978-94-011-0958-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics