Skip to main content

Pressure measurements during acoustic cavitation by sonoluminescence

  • Conference paper
Book cover Bubble Dynamics and Interface Phenomena

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 23))

Abstract

Acoustic cavitation in llquids generates a variety of high energy chemical processes, including sonoluminescence. Intense local heating, either by adiabatic compression or through shock wave formation, occurs with the collapse of bubbles during acoustic cavitation. Previously, we have quantified local temperatures by spectroscopic analysis of sonoluminescence from cavitating bubble clouds. In hydrocarbon liquids, sonoluminescence closely resembles flame emission. The emission is dominantly from excited states of diatomic carbon, C 2; the rotational and vibrational fine structure of this emission permits a spectroscopic determination of the emission temperature of the excited states of C 2, which is ≈ 5100 K. In order to use sonoluminescence to probe local pressures during cavitation, emission from atomic rather than molecular excited states is required. This allows us to accurately measure excited state lifetimes, which can be related to inter-atomic collision rates, and hence pressure. We have discovered that excited state metal atoms are produced during ultrasonic irradiation of solutions containing volatile metal carbonyls. Linewidth analysis of this emission permits us to determine collisional lifetimes of the emitting atoms and from that to estimate effective local pressures during cavitation. The observed excited state lifetime of Cr atoms during emission from Cr(CO)6 is 0.20 ± 0.02 picoseconds, and with a corresponding calculated pressure of 1700 ±110 atmospheres (1.72 ± 0.11 kBar).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suslick, K. S. Science (1990), 2471439.

    Article  ADS  Google Scholar 

  2. Suslick, K. S., ed. Ultrasound: Its Chemical, Physical, and Biological Effects VCH, New York, (1988).

    Google Scholar 

  3. Kamath, V.; Prosperetti, A.; Egolfopoulos, F. N. J. Acoust. Soc. Am. (1993), 94, 248.

    Article  ADS  Google Scholar 

  4. Greenspan, H. P.; Nadim, A. Phys. Fluids A (1993), 5, 1065.

    Article  ADS  MATH  Google Scholar 

  5. Suslick, K. S. “Synthetic Applications of Ultrasound” , Modern Synthetic Methods (1986), 4, 1–60.

    Article  Google Scholar 

  6. Einhorn, C; Einhorn, J.; Luche, J.-L. Synthesis ,(1989), 787.

    Google Scholar 

  7. Mason, T. J., ed. Advances in Sonochemistry; JAI Press: New York, (1990– ;1993); vol. 1–3.

    Google Scholar 

  8. Suslick, K. S. Encyclopedia of Materials Science and Engineering; Cahn, R. W., ed.; Pergamon Press: Oxford, (1992); 3rd Suppl., pp. 2093–2098.

    Google Scholar 

  9. Suslick, K. S.; Cline, Jr., R. E.; Hammerton, D. A. J. Am. Chem. Soc. (1986), 1085641.

    Article  Google Scholar 

  10. Suslick, K. S.; Hammerton, D. A. IEEE Trans. Ultrason. Ferroelec. Freq. Cont. (1986), 33, 143.

    Article  Google Scholar 

  11. Gaitan, D. F. An Experimental Investigation of Acoustic Cavitation in Gaseous Liquids ,Ph.D. Thesis, University of Mississippi, (1990).

    Google Scholar 

  12. Gaitan, D. F.; Crum, L. A.; Church, C. C; Roy, R. A. J. Acoust. Soc. Am. (1992), 91, 3166.

    Article  ADS  Google Scholar 

  13. Barber, B. P.; Putterman, S. J. Nature (London), (1991), 352, 318.

    Article  ADS  Google Scholar 

  14. Barber, B. P.; Hiller, R.; Arisaka, K.; Fetterman, H.; Putterman, S. I. Acoust. Soc. Am. (1992), 91, 3061.

    Article  ADS  Google Scholar 

  15. Gaydon, A. G.; Wolfhard, H. G. Flames: Their Structure, Radiation and Temperature ,J. Wiley and Sons, Inc., New York, (1979).

    Google Scholar 

  16. Suslick, K. S.; Flint, E.B. Nature (1987), 330553.

    Article  ADS  Google Scholar 

  17. Flint, E. B.; Suslick, K. S. I. Am. Chem. Soc. (1989), 1116987.

    Article  Google Scholar 

  18. Flint, E. B.; Suslick, K. S. J. Phys. Chem. (1991), 95, 1484.

    Article  Google Scholar 

  19. Didenko, Y. T.; Gordeychuk, T. V.; Koretz, V. L. J. Sound Vibr. (1991), 147409.

    Article  ADS  Google Scholar 

  20. Verrall, R. E.; Sehgal, C. M. in Ultrasound: Its Chemical, Physical, and Biological Effects Suslick, K. S., ed. VCH, New York, (1988).

    Google Scholar 

  21. Walton, A. J.; Reynolds, G. T. Adv. Physics (1984), 33, 595.

    Article  ADS  Google Scholar 

  22. Hiller, R.; Barber, B. P.; Putterman, S. J. Phys. Rev. Lett. (1992), 69, 1182.

    Article  ADS  Google Scholar 

  23. Flint, E. B.; Suslick, K. S. Science (1991), 2531397.

    Article  ADS  Google Scholar 

  24. Jeffries, J. B.; Copeland, R. A.; Flint, E. B.; Suslick, K. S. Science (1992), 256248.

    Article  ADS  Google Scholar 

  25. Suslick, K. S.; Flint, E. B.; Grinstaff, M. W.; Kemper, K. A. J. Phys. Chem. (1993), 97, 3098.

    Article  Google Scholar 

  26. Suslick, K. S.; Choe, S. B.; Cichowlas, A. A.; Grinstaff, M. W. Nature (1991), 353414.

    Article  ADS  Google Scholar 

  27. Grinstaff, M. W.; Cichowlas, A. A.; Choe, S. B.; Suslick, K. S. Ultrasonics (1992), 30, 168.

    Article  Google Scholar 

  28. Grinstaff, M. W.; Salamon, M. B.; Suslick, K.S. Phys. Rev. B (1993), 48, 269.

    Article  ADS  Google Scholar 

  29. Suslick, K. S.; Kemper, K. A. Ultrasonics (1993), 31, 463.

    Article  Google Scholar 

  30. Sehgal, C; Sutherland, R. G.; Verrall, R. E. J. Phys. Chem. (1980), 84, 388.

    Article  Google Scholar 

  31. Young, F. R. J. Acoust. Soc. Am. (1976), 60, 100.

    Article  ADS  Google Scholar 

  32. Margulis, M. A. Adv. Sonochem. (1990), 1, 39.

    Google Scholar 

  33. Lepoint, T.; Mullie, F; Voglet, N.; Yang, D. H.; Vandercammen, J.; Reisse, J. Tetrahedron Lett (1992)331055

    Article  Google Scholar 

  34. Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids ,J. Wiley and Sons, Inc., New York, (1965).

    Google Scholar 

  35. Benedict, M.; Webb, G. B.; Rubin, L. C. J. Chem. Phys. (1940), 8, 334.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Suslick, K.S., Kemper, K.A. (1994). Pressure measurements during acoustic cavitation by sonoluminescence. In: Blake, J.R., Boulton-Stone, J.M., Thomas, N.H. (eds) Bubble Dynamics and Interface Phenomena. Fluid Mechanics and Its Applications, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0938-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0938-3_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4404-2

  • Online ISBN: 978-94-011-0938-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics