Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 440))

Abstract

‘Dynkin diagrams’ or ‘Coxeter-Dynkin diagrams’ are graphs whose vertices and edges represent generators and relations (respectively) for so-called Coxeter groups. The generators have period two, and each of the relations specifies the period of the product of two generators. For instance, the group of automorphisms of the 27 lines on the general cubic surface (the Wey1 group E 6) is generated by six involutions, each of which interchanges the two rows of a ‘double six’. An early precursor of the appropriate diagram (see page 4) was used in 1904 by C. Rodenberg to indicate how six double-sixes are related. The same diagrams arise in various connections; for instance, the vertices may represent the mirrors of a kaleidoscope while the edges indicate the angles between pairs of mirrors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold V.I., 1974: Critical points of smooth functions. Proc. Internal. Congr. Mathematicians, Vancouver, I, 19–39

    Google Scholar 

  2. Burkhardt H., 1891: Untersuchungen aus dem Gebiete hyperelliptischen Modulfunctionen. III. Math. Ann. 41, 313–343

    Article  MathSciNet  Google Scholar 

  3. Cartan E., 1984: Sur la réduction à sa forme canonique de la structure d’un groupe de transformations fini et continu. Œuvres complètes, I, 293–353

    Google Scholar 

  4. Carter R.W., 1972: Conjugacy classes in the Weyl group. Compositio Math. 25, 1–59

    MathSciNet  MATH  Google Scholar 

  5. Coleman A.J., 1989: The greatest mathematical paper of all time. Math. Intelligencer 11.3, 29–38

    Article  Google Scholar 

  6. Conway J.H. and Sloane N.J.A., 1988: Sphere packings, lattices and groups. Springer, New York

    MATH  Google Scholar 

  7. Coxeter, 1928: The pure Archimedean polytopes in six and seven dimensions. Proc. Camb. Phil. Soc. 24, 1–9

    Article  MATH  Google Scholar 

  8. — 1930: The polytopes with regular-prismatic vertex figures. Phil. Trans. Roy. Soc. London, A 229, pp. 329–425

    Article  MATH  Google Scholar 

  9. — 1931: Groups whose fundamental regions are simplexes. J. London Math. Soc. 6, 132–136

    Article  MathSciNet  Google Scholar 

  10. — 1932: The polytopes with regular-prismatic vertex figures II. Proc. London Math. Soc.(2) 36, 126–189

    Article  MathSciNet  Google Scholar 

  11. — 1934: Discrete groups generated by reflections. Annals of Math. 35, 588–621

    Article  MathSciNet  Google Scholar 

  12. — 1935: The complete enumeration of finite groups of the form R 2 i = (R iRj)kii = 1. J. London Math. Soc. 10, 21–25

    Article  Google Scholar 

  13. — 1940: The polytope 221, whose 27 vertices correspond to the lines on the general cubic surface. Amer. J. Math. 62, 457–486

    Article  MathSciNet  MATH  Google Scholar 

  14. — 1957: Groups generated by unitary reflections of period two. Canad. J. Math. 9, 243–272

    Article  MathSciNet  MATH  Google Scholar 

  15. — 1978: Polytopes in the Netherlands. Nieuw Archief voor Wiskunde (3), 26, 116–141

    MathSciNet  MATH  Google Scholar 

  16. — 1988: Regular and semi-regular polytopes. III. Math. Z. 200, 3–45

    Article  MathSciNet  MATH  Google Scholar 

  17. — 1990: Regular complex polytopes (2nd ed.) Cambridge University Press

    Google Scholar 

  18. Davis C., Grünbaum B. and Sherk F.A., 1980: The geometric vein. Springer, New York

    Google Scholar 

  19. del Pezzo P., 1887: Sulle superficie dell’ n mo ordine immerse nello spazio di n dimensione. Rend. Circolo Mat. di Palermo 1, 241–271

    Article  MATH  Google Scholar 

  20. Dickson L.E., 1916: Applications of finite groups. Part III of Miller, Blichfelft and Dickson, Finite groups, Wiley, New York

    Google Scholar 

  21. Du Val P., 1933: On the directrices of a set of points in a plane. Proc. London Math. Soc.(2), 35, 23–74

    Article  Google Scholar 

  22. — Val P. 1934: On isolated singularities of surfaces which do not affect the conditions of adjunction. Proc. Camb. Phil. Soc. 30, 453–491

    Article  Google Scholar 

  23. Edge W.L., 1970: Permutation representations of a group of order 9, 196, 830, 720. J. London Math. Soc. (2), 2, 752–762

    MathSciNet  Google Scholar 

  24. Elte E.L., 1912: The semiregular polyiopes of the hyperspaces. Groningen

    Google Scholar 

  25. Fischer G., 1986a: Mathematische Modelle. Vieweg, Braunschweig

    Book  MATH  Google Scholar 

  26. — 1886b: Mathematische Modelle, Kommentarband. Vieweg, Braunschweig

    Google Scholar 

  27. Geiser C.F., 1869: Ueber die Doppeltangenten einer ebenen Curve vierten Grades. Math. Ann. 1, 129–138

    Article  MathSciNet  MATH  Google Scholar 

  28. Gosset T., 1900: On the regular and semi-regular figures in space of n dimensions. Messenger of Mathematics 29, 43–48

    Google Scholar 

  29. Gruber P. and Wills J.M., 1983: Convexity and its applications. Birkhäuser, Basel

    MATH  Google Scholar 

  30. Hazewinkel M., Hesselink W., Siersma D. and Veldkamp F.D., 1977: The ubiquity of Coxeter-Dynkin diagrams (an introduction to the A-D-E problem). Nieuw Arch. Wish. 25, 257–307

    MathSciNet  MATH  Google Scholar 

  31. Jacobson N., 1962: Lie algebras. Interscience, New York

    MATH  Google Scholar 

  32. Jordan C., 1870: Traité des substitutions et des équations algébriques. Paris

    Google Scholar 

  33. Killing W., 1889: Die Zusammensetzung der stetigen endlichen Transformationsgruppen. Math. Ann. 33, 1–48

    Article  MathSciNet  Google Scholar 

  34. Maschke H., 1889: Aufstellung des vollen Formensystems einer quaternären Gruppe von 51840 linearen Substitutionen. Math. Ann. 33, 317–344

    Article  MathSciNet  MATH  Google Scholar 

  35. McMullen P., 1991: The order of a finite Coxeter group. Elemente der Mathematik 46, 121–152

    MathSciNet  MATH  Google Scholar 

  36. Rodenberg C. 1904: Modelle von Flächen dritter Ordnung, in Mathematische Abhandlungen aus dem Verlage Mathematischer Modelle von Martin Schilling. Halle a. S

    Google Scholar 

  37. Schellekens A.N. and Warner N.P., 1988: Weyl groups, supercurrents and covariant lattices. Nuclear Physics B, 308, 397–435

    Article  MathSciNet  Google Scholar 

  38. Schläfli L., 1852: Lehre von den linearen Kontinuen, Gesammelte Mathematische Abhandlungen I, 177–226, Birkhäuser, Basel, 1950

    Google Scholar 

  39. — 1858: An attempt to determine the twenty-seven lines upon a surface of the third order…, Gesammelte Mathematische Abhandlungen II, 198–218, Birkhäuser, Basel, 1953

    Google Scholar 

  40. Schoute P.H., 1910: On the relation between the vertices of a definite sixdimensional polytope and the lines of a cubic surface. K. Akad. Wetens. Amsterdam, Proc. Sec. Sci. 13, 375–383

    Google Scholar 

  41. Shephard G.C., 1953: Unitary groups generated by reflections. Canada. J. Math. 5, 364–383

    Article  MathSciNet  MATH  Google Scholar 

  42. Shephard G.C. and Todd J.A., 1954: Finite unitary reflection groups. Canad. J. Math. 6, 274–304

    Article  MathSciNet  MATH  Google Scholar 

  43. Steiner J., 1857: Über die Flächen dritten Grades. J. für r. und a. Math. 53, 133–141

    MATH  Google Scholar 

  44. Todd J.A., 1932: Polytopes associated with the general cubic surface. J. London Math. Soc. 7, 200–205

    Article  MathSciNet  Google Scholar 

  45. Tsaranov S.V., 1989: On a generalization of Coxeter groups. Algebras, Groups and Geometries 3, 281–318

    MathSciNet  Google Scholar 

  46. Vinberg E.B., 1971: Discrete linear groups generated by reflections. Izv. Akad. Nauk SSSR, Serv. Mat., Tom 35 = Math. USSR Izvestija 5.5, 1083–1119

    Google Scholar 

  47. Weyl H., 1935: The structure and representation of continuous groups. Institute for Advanced Study, Princeton; Notes.

    Google Scholar 

  48. Witt E., 1941: Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe. Abh. Math. Sem. Hansischen Univ. 14, 289–322

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coxeter, H.S.M. (1994). The Evolution of Coxeter-Dynkin Diagrams. In: Bisztriczky, T., McMullen, P., Schneider, R., Weiss, A.I. (eds) Polytopes: Abstract, Convex and Computational. NATO ASI Series, vol 440. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0924-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0924-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4398-4

  • Online ISBN: 978-94-011-0924-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics