Non-invasive study of the local mechanical arterial characteristics in humans

  • Arnold P. G. Hoeks
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 144)


Various relationships are suggested in the literature to qualify the elastic behavior of (a segment of) an artery as a function of measurable parameters.


Pulse Wave Velocity Observation Window Axial Resolution Ultrasound Beam Noninvasive Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Silver FH, Christiansen DL, Buntin CM. Mechanical properties of the aorta: a review. Critical Reviews Biomed Eng 1989; 17: 323–358.Google Scholar
  2. 2.
    O’Rourke M. Arterial stiffness, systolic blood pressure and logical treatment of arterial hypertension. Hypertension 1990; 15: 339–347.PubMedCrossRefGoogle Scholar
  3. 3.
    Lehmann ED, Gosling RG, Fatemi-Langroudi B, Taylor MG. Non-invasive Doppler ultra-sound technique for the in vivo assessment of aortic compliance. J Biomed Eng 1992; 14: 250–256.PubMedCrossRefGoogle Scholar
  4. 4.
    Wells PNT. Physical principles of ultrasonic diagnosis. London: Academic Press, 1969.Google Scholar
  5. 5.
    Arndt JO. Ü ber die Mechanik der intakten A. Carotis Communis des Menschen unter verschiedenen Kreislaufbedingungen. Archiv fü r Kreislaufforschung, 1986; 59: 153–197CrossRefGoogle Scholar
  6. 6.
    Blankenhorn DH, Chin HP, Conover DJ, Nessim SA. Ultrasound observation on pulsation in human carotid artery lesions. Ultrasound Med Biol 1988; 14: 583–587.PubMedCrossRefGoogle Scholar
  7. 7.
    Buntin CH, Silver FH. Noninvasive assessment of mechanical properties of peripheral arteries. Annals of Biomed Eng 1990; 18: 549–566.CrossRefGoogle Scholar
  8. 8.
    Hokanson DE, Mozersky DJ, Sumner DS, Strandness DE. A phase locked echo-tracking system for recording arterial diameter changes in vivo. J Appl Phys, 1972; 32: 728–733.Google Scholar
  9. 9.
    Mozersky DJ, Sumner DS, Hokanson DE, Strandness DE. Transcutaneous measurement of the elastic properties of the human femoral artery. Circulation, 1972; 46: 948–955.PubMedCrossRefGoogle Scholar
  10. 10.
    Gennser G, Lindström K, Dahl P, et al. A dual high-resolution 2-dimensional ultrasound for measuring target movements. Ultrasound Med Biol 1981; 7: 71–75.Google Scholar
  11. 11.
    Groves DH, Powalowski T, White DN. A digital technique for tracking moving interfaces. Ultrasound Med Biol 1982; 8: 185–190.PubMedCrossRefGoogle Scholar
  12. 12.
    Imura T, Yamamoto K, Kanamori K, Mikami T, Yasuda H. Non-invasive ultrasonic measurement of the elastic properties of the human abdominal aorta. Cardiovasc Res 1986; 20: 208–214.PubMedCrossRefGoogle Scholar
  13. 13.
    Lindstrom K, Gennser G, Sindberg Eriksen P, Benthin M, Dahl P. An improved echo-tracker for studies on pulse wave in the fetal aorta. In: Rolfe P, editor. Fetal Physiological Measurements 1987; 217-226.Google Scholar
  14. 14.
    Powalowski T, Pensko B. A noninvasive ultrasonic method for the elasticity evaluation of the carotid arteries and its application in the diagnosis of the cerebro-vascular system. Arch Acoustics 1988; 13: 109–126Google Scholar
  15. 15.
    Olsen CF. Doppler ultrasound: A technique for obtaining arterial wall motion parameters. IEEE Trans Sonics Ultrasonics 1977; SU-24: 354–358CrossRefGoogle Scholar
  16. 16.
    Hoeks APG, Ruissen CJ, Hick P, Reneman RS. Transcutaneous detection of relative changes in artery diameter. Ultrasound Med Biol 1985; 11: 51–59.PubMedCrossRefGoogle Scholar
  17. 17.
    Hoeks APG, Brands PJ, Smeets FAM, Reneman RS. Assessment of the distensibility of superficial arteries. Ultrasound Med Biol 1990; 16: 121–128.PubMedCrossRefGoogle Scholar
  18. 18.
    de Jong PGM, Arts T, Hoeks APG, Reneman RS. Determination of tissue motion velocity by correlation interpolation of pulsed ultrasonic signals. Ultrasonic Imaging 1990; 12: 84–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Länne T, Stale H, Bengtsson H, et al. Noninvasive measurement of diameter changes in the distal abdominal aorta in man. Ultrasound Med Biol 1992; 18: 451–457.PubMedCrossRefGoogle Scholar
  20. 20.
    Bonnefous O, Pesqué P. Time domain formulation of pulse-Doppler ultrasound and blood velocity estimation by cross correlation. Ultrasonic Imaging 1986; 8: 73–85.PubMedCrossRefGoogle Scholar
  21. 21.
    de Jong PGM, Arts T, Hoeks APG, Reneman RS. Experimental evaluation of the correlation interpolation technique to measure regional tissue velocity. Ultrasonic Imaging 1991; 13: 145–161.PubMedCrossRefGoogle Scholar
  22. 22.
    Eriksen M. Non-invasive measurement of arterial diameters in humans using ultrasound echoes with prefiltered waveforms. Med & Biol Eng & Comput 1987; 25: 189–194.CrossRefGoogle Scholar
  23. 23.
    Martin C, Meister JJ, Arditi M, Farine PA. A novel homomorphic processing of ultrasonic echoes for layer thickness measurement. IEEE Trans Signal Proc 1992; 40: 1819–1825.CrossRefGoogle Scholar
  24. 24.
    Tardy Y, Meister JJ, Perret F, Brunner HR, Arditi M. Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and plethysmographic measurements. Clin Phys Physiol Meas 1991; 12: 39–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Benthin M, Dahl P, Ruzicka R, Lindström K. Calculation of pulse wave velocity using cross-correlation — effects of reflexes in the arterial tree. Ultrasound Med Biol 1991; 17: 461–469.PubMedCrossRefGoogle Scholar
  26. 26.
    Struijk PC, Wladimiroff JW, Hop WCJ, Simonazzi E. Pulse pressure assessment in the human fetal descending aorta. Ultrasound Med Biol 1992; 18: 39–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Arnold P. G. Hoeks

There are no affiliations available

Personalised recommendations