Advertisement

Mechanical stress of the arterial wall and hypertension

  • Stéphane Laurent
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 144)

Abstract

The effects of mechanical stress on the arterial wall have extensively been described during the past decades and have been applied to the understanding of hypertension. However, in these studies, mechanical stress is most often referred to as steady stress and little work examined the effects of pulsatile stress or considered the variability of mechanical stress.

Keywords

Shear Stress Wall Shear Stress Arterial Wall Common Carotid Artery Pulsatile Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Darne B, Girerd X, Safar M, Cambien F, Guize L. Pulsatile versus steady component of blood pressure: a cross-sectional analysis and a prospective analysis on cardiovascular mortality. Hypertension 1989; 13: 392–400.PubMedCrossRefGoogle Scholar
  2. 2.
    Hadju MA, Heistad DD, Baumbach GL. effects of antihypertensive treatment on mechanics of cerebral arterioles in rats. Hypertension 1990; 17: 308–316.Google Scholar
  3. 3.
    Christensen KL. Reducing pulse pressure in hypertension may normalize small artery structure. Hypertension 1991; 18: 722–727.PubMedCrossRefGoogle Scholar
  4. 4.
    Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypert-ens 1987; 5: 93–98.CrossRefGoogle Scholar
  5. 5.
    Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries. London/Melbourne/Auckland: Edward Arnold, 1990.Google Scholar
  6. 6.
    Milnor WR, Principles of hemodynamics. In: Milnor WR, editor. Cardiovacular physiology. New York: Oxford University Press, 1990: 171–215.Google Scholar
  7. 7.
    Cox RH. Mechanics of canine iliac artery smooth muscle in vitro. Am J Physiol 1976; 230: 462–470.PubMedGoogle Scholar
  8. 8.
    Dobrin PB, Rovick AA. Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am J Physiol 1969; 217: 1644–1652.PubMedGoogle Scholar
  9. 9.
    Dobrin PB. Mechanical properties of arteries. Physiol Rev 1978; 58: 97–460.Google Scholar
  10. 10.
    Reneman RS, van Merode T, Hick P, Muytens AMM, Hoeks APG. Age related changes in carotid artery wall properties in men. Ultrasound Med Biol 1986; 12: 465–471.PubMedCrossRefGoogle Scholar
  11. 11.
    Arcaro G, Laurent S, Jondeau G, Hoeks A, Safar M. Stiffness of the common carotid artery in treated hypertensive patients. J Hypertens 1991; 9: 947–954.PubMedCrossRefGoogle Scholar
  12. 12.
    Cox RH. Determination of series elasticity in arterial smooth muscle. Am J Physiol 233 (Heart Circ Physiol 2) 1977; H248–H255.PubMedGoogle Scholar
  13. 13.
    Attinger FML. Two-dimensional in vitro studies of femoral arterial walls of the dog. Circ Res 1968; 22: 829–840.PubMedCrossRefGoogle Scholar
  14. 14.
    Gow BS. Circulatory correlates: vascular impedance, resistance, and capacity. In: Bohr DF, Somlyo AP, Sparks HV, editors. Handbook of physiology. The cardiovascular system. Vascular smooth muscle. Bethesda: Am Physiol Soc, 1980, Sect 2, Vol II, Ch 14: 353–408.Google Scholar
  15. 15.
    Hoeks APG, Brands PJ, Smeets F, Reneman RS. Assessment of the distensibility of superficial arteries. Ultrasound Med Biol 1990; 16: 121–128.PubMedCrossRefGoogle Scholar
  16. 16.
    Tardy Y, Meister JJ, Perret F, Brunner HR, Arditi M. Non invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements. Clin Physiol Meas 1991; 12: 39–54.CrossRefGoogle Scholar
  17. 17.
    Kelly RP, Hayward CS, Ganis J, Daley J, Avolio A, O’Rourke M. Non invasive registration of the arterial pressure pulse waveform using high fidelity applanation tonometry. J Vasc Med Biol 1989; 1: 142–149.Google Scholar
  18. 18.
    Saba PS, Roman MJ, Pini R, Spitzer M, Pickering T, Devereux R. The carotid pressure waveform is related to carotid and left ventricular anatomy. Am J Hypertens 1992; 5: 38A.Google Scholar
  19. 19.
    Girerd X, Mourad JJ, Boutouyrie P, Safar M, Laurent S. Incompressibility of the arterial wall: a noninvasive evaluation in man. J. Hypertension 10(suppl 6): S111–S114, 1992.Google Scholar
  20. 20.
    Lawton RW. Some aspects of research in biological elasticity. Introductory remarks. In: Remington JW, editor. Tissue Elasticity. Washington, DC: Am Physiol Soc, 1957: 1–11.Google Scholar
  21. 21.
    Patel DJ, Fry DL. In situ pressure-radius-length measurements in ascending aorta of anaesthetized dogs. J Appl Physiol 1964; 19: 413–446.PubMedGoogle Scholar
  22. 22.
    Patel DJ, Greenfield JC, Fry DL. In vivo pressure-length-radius relationship of certain blood vessels in man and dog. In: Attinger EO, editor. Pulsatile blood flow. Int Symp, Philadelphia, PA: McGraw-Hill, 1963; 293–306.Google Scholar
  23. 23.
    Dobrin PB, Doyle JM. Vascular smooth muscle and the anisotropy of dog carotid artery. Circ Res 1970; 27: 105–119.PubMedCrossRefGoogle Scholar
  24. 24.
    Dobrin PB. Vascular mechanics. In: American Physiological Society, Handbook of Physiology, Section 2, The cardiovascular system, Vol 3, Baltimore. 1983: 65-102.Google Scholar
  25. 25.
    Stehbens WE. Hemodynamics and the blood vessel wall. Springfield: Charles C. Thomas, 1979.Google Scholar
  26. 26.
    Carton RW, Dainauskas J, Clark JW. Elastic properties of single elastic fibers. J Appl Physiol 1962; 17: 547–551.PubMedGoogle Scholar
  27. 27.
    Remington JW, Hamilton WF, Dow P. Some difficulties involved in the prediction of the stroke volume form the pulse wave velocity. Am J Physiol 1945; 180: 83–95.Google Scholar
  28. 28.
    McDonald DA. Blood flow in arteries. London: Edward Arnold, 1974.Google Scholar
  29. 29.
    Doyle JM, Dobrin PB. Stress gradients in the walls of large arteries. J Biomech 1973; 6: 631–639.PubMedCrossRefGoogle Scholar
  30. 30.
    Simon BR, Kobayashi AS, Strandness E, Wierderhielm CA. Reevaluation of arterial constitutive relations. Circ Res 1972; 30: 491–500.PubMedCrossRefGoogle Scholar
  31. 31.
    Wolinsky H, Glagov S. Lamellar unit of aortic medial structure and function in mammals. Circ Res 1967; 20: 99–111.PubMedCrossRefGoogle Scholar
  32. 32.
    Hedin U, Sjolund M, Hultgardh-Nilsson B, Thyberg J. Changes in expression and organization of smooth muscle specific alpha actin during fibronectin-mediated modulation of arterial smooth muscle cell phenotype. Differentiation 1990; 44: 222–231.PubMedCrossRefGoogle Scholar
  33. 33.
    Bottger BA, Hedin U, Johansson S, Thyberg J. Integrin-type receptors of rat arterial smooth muscle cells: isolation, partial characterisation and role In cytoskeletal organisation and control of differential properties. Differentiation 1989,41: 158–167.PubMedCrossRefGoogle Scholar
  34. 34.
    Saouaf R, Takasaki I, Eastman E, Chobanian A, Brecher P. Fibronectin biosynthesis in the rat aorta in vitro. J Clin Invest 1991; 88: 1182–1189.PubMedCrossRefGoogle Scholar
  35. 35.
    Bayliss LE. The rheology of blood. In: American Physiological Society Handbook of Physiology, Section 2, Circulation, Vol 1, Washington, 1962.Google Scholar
  36. 36.
    Fung YC. Biomechanics: Mechanical properties of living tissues. New-York: Springer-Verlag: 1981.Google Scholar
  37. 37.
    Caro CG, Pedley JG, Schroter RC, Seed WA. The mechanics of the circulation. Oxford: Oxford University Press, 1978.Google Scholar
  38. 38.
    Schretzenmayr A. Uber kreislaufregulatarische Vorgange an den grossen Arterian bei der Muskelarbeit. Pfluegers Arch 1933; 232: 743–748.CrossRefGoogle Scholar
  39. 39.
    Smiesko V, Kokik J, Dolezel S. Role of endothelium in the control of arterial diameter by blood flow. Blood Vessels 1985; 22: 247–251.PubMedGoogle Scholar
  40. 40.
    Olensen SP, Clapham DE, Davies PF. Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 1988; 331: 168–170.CrossRefGoogle Scholar
  41. 41.
    Pohl U, Holtz J, Busse R, Bassenge E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 1986; 8: 34–44.CrossRefGoogle Scholar
  42. 42.
    Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986; 250: H1145-H49.Google Scholar
  43. 43.
    Koller A, Kaley G. Prostaglandins mediates arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ Res 1990; 67: 529–534.PubMedCrossRefGoogle Scholar
  44. 44.
    Bevan JA, Joyce EHN, Wellman GC. Flow dependent dilation in a resistance artery still occurs after endothelium removal. Circ Res 1988; 63: 980–985.PubMedCrossRefGoogle Scholar
  45. 45.
    Bevan JC, Joyce EH. Flow-induced resistance artery tone balance between constrictor and dilator mechanisms. Am J Physiol 1990; 258: H663–H668.PubMedGoogle Scholar
  46. 46.
    Berne RM, Levy MN. Cardiovascular physiology. St Louis: CV Mosby, 1972: 41–99.Google Scholar
  47. 47.
    Womersley JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 1955; 127: 553–563.PubMedGoogle Scholar
  48. 48.
    Hale JF, McDonald DA, Womersley JR. Velocity profiles of oscillating arterial flow, with some calculations of viscous drag and the Reynold number. J Physiol 1955; 128: 629–640.PubMedGoogle Scholar
  49. 49.
    Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 1985; 5: 293–302.PubMedCrossRefGoogle Scholar
  50. 50.
    Klanchar M, Tarbell JM, Wang DM. In vitro study of the influence of radial wall motion on wall shear stress in an elastic tube model of the aorta. Circ Res 1990; 66: 1624 35.PubMedCrossRefGoogle Scholar
  51. 51.
    Sandor B. Fundamentals cf cyclic stress and strain. Madison: University of Wisconsin, 1972.Google Scholar
  52. 52.
    Prokop EK, Palmer RF, Wheat MW. Hydrodynamic forces in dissecting aneurysms. Circ Res 1970; 27: 121–127.PubMedCrossRefGoogle Scholar
  53. 53.
    Mayer S. Studien zur Physiologie des Herzens und der Blutgefasse: 5. Abhandlung: uber spontane Blutdruckschwankungen. Sber Akad Wiss Wien 1876; 74: 281–307.Google Scholar
  54. 54.
    Penaz J. Mayer waves: history and methodology. Automedica 1978; 2: 135–141.Google Scholar
  55. 55.
    Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84: 482–492.PubMedCrossRefGoogle Scholar
  56. 56.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cell in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–376.PubMedCrossRefGoogle Scholar
  57. 57.
    Vanhoutte PM. The endothelium-dependent modulation of vascular smooth muscle tone. New Eng J Med 1988; 319: 512–513.PubMedCrossRefGoogle Scholar
  58. 58.
    Rees DD, Palmer RJ, Schultz R, Hodson HF, Moncada S. Characterization of three inhibitors of endothelial nitris oxide synthase in vitro and in vivo. Br J Pharmacol 1990; 101: 746–752.PubMedCrossRefGoogle Scholar
  59. 59.
    Hutcheson IR, Griffith TM. Release of endothelium derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am J Physiol 1991; 261: H257–H262.PubMedGoogle Scholar
  60. 60.
    Rubanyi GM. Endothelium-dependent pressure-induced contraction of isolated canine carotid artery. Am J Physiol 1988; 255: H783–H788.PubMedGoogle Scholar
  61. 61.
    Griffith T, Hutcheson I, Randall M, Edwards D. Role of flow in endothelium-mediated responses. In: Mulvany MJ, Aalkjer C, Heagerty AM, Nyborg NCB, Strandgaard S, editors, Resistance arteries, structure and function. Amsterdam: Excerta Medica, 1991: 204–207.Google Scholar
  62. 62.
    Bevan JA,, Joyce EH, Wellman GC. Flow dependent dilation in a resistance artery still occurs after endothelium removal. Circ Res 1988; 63: 980–985.PubMedCrossRefGoogle Scholar
  63. 63.
    Bevan JA, Joyce EH. Flow-induced resistance artery tone: balance between constrictor and dilator mechanisms. Am J Physiol 1990 258: H663–H669.PubMedGoogle Scholar
  64. 64.
    Laurent S, Lacolley P, Brunei P, Laloux B, Pannier B, Safar M. Flow-dependent vasodil-ation of the brachial artery in essential hypertension. Am J Physiol 1990; 258: H1004–H1011.PubMedGoogle Scholar
  65. 65.
    Girerd X, Arcaro G, Laurent S, Laloux B, Safar M. Etude de la vasodilatation flux-dé pendante au niveau de I’artere fé morale chez l’hypertendu et le normotendu. Arch Mal Coeur 1991; 84: 1075–1079.PubMedGoogle Scholar
  66. 66.
    Busse R, Mulsch A, Bassenge E. Shear stress-dependent nitric oxide release controls neuro-and myogenic vasoconstriction. In: Mulvany MJ, Aalkjer C, Heagerty AM, Nyborg NCB, Strandgaard S, editors, Resistance arteries structure and function. Amsterdam: Excerta Medica, 1991: 221–225.Google Scholar
  67. 67.
    Folkow B. Intravascular pressure as a factor regulating the tone of the small blood vessels. Acta Physiol Scand 1949; 86: 211–222.Google Scholar
  68. 68.
    Burrows ME, Johnson PC. The response of cat mesenteric arteries to arterial pressure reduction. Arch Int Pharmacodyn Ther 1978; 236: 290–291.PubMedGoogle Scholar
  69. 69.
    London G, Pannier B, Laurent S, Lacolley P, Safar M. Brachial artery diameter changes associated with cardiopulmonary baroreflex activation in humans. Am J Physiol 1990; 258: H773–H777.PubMedGoogle Scholar
  70. 70.
    Laurent S, Juillerat L, London GM, Nussberger J, Brunner H, Safar M. Increased response of brachial artery diameter to norepinephrine in hypertensive patients. Am J Physiol 1988; 255: H36–H43.PubMedGoogle Scholar
  71. 71.
    Lacolley P, Laurcnt S, Boutouyric P, Girerd X, Beck L, Safar M. Sympathetic activation decreases arterial compliance through a direct effect on the arterial wall. 14th Scientific Meeting of the International Society of Hypertension, 1992: S-59.Google Scholar
  72. 72.
    Yamori Y, Mano M, Nara Y, Horie R. Catecholamine-induced polyploidization in vascular smooth muscle cells. Circulation 1987; 75(suppl I): 1–92-95.Google Scholar
  73. 73.
    Geisterfer A AT, Peach MJ, Owens G. Angiotensin II induces hypertrophy, not hyperplasia of cultured rat aortic smooth muscle cells. Circ Res 1988; 62: 749–756.PubMedCrossRefGoogle Scholar
  74. 74.
    Folkow B. ’structural factor’ in primary and secondary hypertension. Hypertension 1990; 16: 89–101.PubMedCrossRefGoogle Scholar
  75. 75.
    Schwartz SM, Majesky MW, Dilley RJ. Vascular remodeling in hypertension and atherosclerosis. In: Hypertension: pathophysiology, diagnosis and management. Laragh JH, Brenner BM, editors. New York: Raven Press, 1990: 521–539.Google Scholar
  76. 76.
    Mulvany MJ, Hansen PK, Aalkjer C. Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rat is associated with an increased number of smooth muscle cell layers. Circ Res 1978; 43: 854–864.PubMedCrossRefGoogle Scholar
  77. 77.
    Folkow B, Hallbaeck, M, Lundgren Y, Weiss L. Background of increased flow resistance and vascular reactivity in spontaneously hypertensive rats. Acta Physiol Scand 1974; 91: 103–115.PubMedCrossRefGoogle Scholar
  78. 78.
    Wolinski H. effect of hypertension and its reversal on the thoracic aorta of male and female rats. Circ Res 1971; 28: 622–636.CrossRefGoogle Scholar
  79. 79.
    Berry CL, Greenwald SE. Effect of hypertension on the static mechanical properties and chemical composition of the rat aorta. Cardiovasc Res 1976; 10: 437–451.PubMedCrossRefGoogle Scholar
  80. 80.
    Folkow B, Grimby G, Thulesius O. Adaptive structural changes of the vascular walls ni hypertension and their relation to the control of peripheral resistance. Acta Physiol Scand 1958; 44: 255–272.PubMedCrossRefGoogle Scholar
  81. 81.
    Friberg P, Wahlander H, Nordlander M. Structural and functional adaptations within the myocardium and coronary vessels after antihypertensive therapy in spontaneously hypertensive rats. J Hypertens 1986; 4(suppl 3): S519–SS21.Google Scholar
  82. 82.
    Aalkjer C, Heagerty AM, Petersen KK, Swales JD, Mulvany MJ. Evidence for increased media thickness, increased neuronal amine uptake, and depressed excitation-contraction coupling in isolated resistance vessels from essential hypertension. Circ Res 1987; 61: 181–186.CrossRefGoogle Scholar
  83. 83.
    Schwartzkopff B, Motz W, Knauer S, Frenzel H, Strauer B. Morphometric investigation of intramyocardial arterioles in right septal endomyocardial biopsy of patients with arterial hypertension and left ventricular hypertrophy. J Cardiovasc Pharmacol 1992; 20(Suppl 1): S12-S7.Google Scholar
  84. 84.
    Horwitz D, Clineschmidt BV, Vanburen G, Omaya AK. Temporal arteries from hypertensive and normotensive man. Circ Res 1974; (suppl 1): 1-109-115.Google Scholar
  85. 85.
    Avolio AP, Deng Fa-Quan, Li WQ, et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation 1985; 71: 202–210.PubMedCrossRefGoogle Scholar
  86. 86.
    Mulvany MJ. Biophysical aspects of resistance vessels studied in spontaneous and renal hypertensive rats. Acta Physiol Scand 1988; 133(suppl 571): 129–138.Google Scholar
  87. 87.
    Baumbach GL, Dobrin PB, Hart MN, Heistadt DD. Mechanics of cerebral arterioles in hypertensive rats. Circ Res 1988; 62: 56–64.PubMedCrossRefGoogle Scholar
  88. 88.
    Laurent S, Hayoz D, Trazzi S, et al. Isobaric compliance of the radial artery is increased in patients with essential hypertension. J Hypertens 1993; 11: 89–98.PubMedCrossRefGoogle Scholar
  89. 89.
    Mulvany MJ. A reduced elastic modulus of vascular wall components in hypertension ? Hypertension 1992; 20: 7–9.Google Scholar
  90. 90.
    Learoyd MB, Taylor MG. Alterations with age in the viscoelastic properties of human arterial wall. Circ Res 1966; 18: 278–292.PubMedCrossRefGoogle Scholar
  91. 91.
    Boutouyrie P, Laurent S, Benetos A, Girerd X, Hoeks A, Safar M. Opposing effects of aging on distal and proximal large arteries in hypertensives. J Hypertens 1992; 10(suppl 6): S87–S91.Google Scholar
  92. 92.
    Fischer GM, Swain ML, Cherian K. Increased vascular collagen and elastin synthesis in experimental atherosclerosis in the rabbit. Variation in synthesis among multiple vessels. Atherosclerosis 1980; 35: 11–20.PubMedCrossRefGoogle Scholar
  93. 93.
    Leung DY, Glagov S, Mathews MB. Cyclic stretching stimulates the synthesis of matrix components by arterial smooth muscle cells in vitro. Science 1976; 191: 475–477.PubMedCrossRefGoogle Scholar
  94. 94.
    Sottiurai VW, Kollros P, Mathews MB, Zarins CK, Glagov S. Morphologic alteration of smooth muscle cells by cycling stretching. J Surg Res 1983; 35: 490–497.PubMedCrossRefGoogle Scholar
  95. 95.
    Lyon RT, Runyon-Hass A. Davis HR, Glagov S, Zarins CK. Protection from atherosclerosis lesion formation by reduction of artery wall motion. J Vasc Surg 1987; 5: 59–67.PubMedGoogle Scholar
  96. 96.
    Hollander W, Kramsch DM, Farelant M, Madoff IM. Arterial wall metabolism in experimental hypertension of coarctation of the aorta of short duration. J Clin Invest 1968; 47: 1221–1229.PubMedCrossRefGoogle Scholar
  97. 97.
    Bomberger RA, Zarins CK, Taylor KE, Glagov S. Effects of hypotension on atherogenesis and aortic wall composition. J Surg Res 1980; 36: 745–760.Google Scholar
  98. 98.
    Baumbach GL, Siems JE, Heistadt DD. Effects of local reduction in pressure on distens-ibility and composition of cerebral arterioles. Circ Res 1991; 68: 338–351.PubMedCrossRefGoogle Scholar
  99. 99.
    Bots M, Hofman A, de Bruyn AM, de Jong PTVM, Grobbe DE. Isolated systolic hypertension and vessel wall thickness of the carotid artery. The Rotterdam Elderly Study.. Arteriosclerosis and Thrombosis 1993; 13: 64–69.PubMedCrossRefGoogle Scholar
  100. 100.
    Mancia G, Ferrari A, Gregorini L. et al. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res 1983; 53: 96–104.PubMedCrossRefGoogle Scholar
  101. 101.
    Lacolley P, Glaser E, Challandes P, Brisac A-M, Safar M, Laurent S. Effects of sympathetic denervation on mechanical properties of rat large arteries. Arch Mal Coeur 1991; 84: S13.Google Scholar
  102. 102.
    Fuster V, Badimon L, Cohen M, Ambrose JA, Badimon JJ, Chesebro J. Insights into the pathogenesis of acute ischemic syndromes. Circulation 1988; 77: 1213–1220.PubMedCrossRefGoogle Scholar
  103. 103.
    Davies MJ. A macro and micro view of coronary vascular insult in ischemic heart disease. Circulation 1990; 8Z(suppl II) II38–II46.Google Scholar
  104. 104.
    Falk E. Coronary thrombosis: Pathogenesis and clinical manifestations. Am J Cardiol 1991; 68: 28B–35B.PubMedCrossRefGoogle Scholar
  105. 105.
    Gertz SD, Roberts WC. Hemodynamic shear force in rupture of coronary arteria atherosclerotic plaques. Am J Cardiol 1990; 66: 1368–1372.PubMedCrossRefGoogle Scholar
  106. 106.
    Binns RL, Ku DN. Effect of stenosis on wall motion: a possible mechanism of stroke and transient ischemic attack. Arteriosclerosis 1989; 9: 842–847.PubMedCrossRefGoogle Scholar
  107. 107.
    Barger AC, Beeuwes R, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovas-cularization of human coronary arteries: A possible role in the pathophysiology of atherosclerosis. N Eng J Med 1991; 88: 8154–8158.Google Scholar
  108. 108.
    Loree HM, Kamm RD, Atkinson CM, Lee RT. Turbulent pressure fluctuations on surface of model vascular stenoses. Am J Physiol 1991; 261: H644–H650.PubMedGoogle Scholar
  109. 109.
    Vito RP, Whang MC, Giddens DP, Zarins CK, Glagov S. Stress analysis of the diseased arterial cross-section. ASME Adv Bioeng Proc 1990; 19: 273–276.Google Scholar
  110. 110.
    Loree HM, Kamm RD. Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992; 71: 850–858.PubMedCrossRefGoogle Scholar
  111. 111.
    Richardson PD, Davies MJ, Born GVR. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989; 2: 941–944.PubMedCrossRefGoogle Scholar
  112. 112.
    Kayima A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 1980; 239: H14–H21.Google Scholar
  113. 113.
    Liebow AA. Situations which lead to changes in vascular patterns. In: Handbook of Physiology. Section 2, The cardiovascular system, Washington DC, 1963, American Physiological Society; pp 1251-1276.Google Scholar
  114. 114.
    Guyton JR, Hartley CJ. Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter. Am J Physiol 1985; 248: H540–H546.PubMedGoogle Scholar
  115. 115.
    Langille BL, Bendeck MP, Keeley FW. Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am J Physiol 1989; 256: H931–H939.PubMedGoogle Scholar
  116. 116.
    Fry DL. Acute vascular cndothclial changes associated with increased blood flow velocity gradients. Circ Res 1968; 22: 165–197.PubMedCrossRefGoogle Scholar
  117. 117.
    Caro CC, Nerem RM. Transport of 14 C-4-cholesterol between serum and wall in the perfused dog common carotid artery. Circ Res 1973; 32: 187–205.PubMedCrossRefGoogle Scholar
  118. 118.
    Glagov S, Zarins CK. Is intimai hyperplasia an adaptive response or a pathologic process? Observations on the nature of nonatherosclerotic intimai thickening. J Vasc Surg 1989; 10: 571–573.CrossRefGoogle Scholar
  119. 119.
    Margitic SE, Bond MG, Crouse JR, Furberg CD, Probstfield JL. Progression and regression of carotid atherosclerosis in clinical trials. Arteriosclerosis and Thrombosis 1991; 11: 443–451.PubMedCrossRefGoogle Scholar
  120. 120.
    Dintenfass L, Bauer GE. Dynamic blood coagulation and viscosity and degradation of artificial thrombi in patients with hypertension. Cardiovasc Res 1970; 4: 50–60.PubMedCrossRefGoogle Scholar
  121. 121.
    Zannad F, Voisin P, Brunotte F, Bruntz JF, Stolz JF, Gilgenkrantz JM. Hemorheological abnormalities in arterial hypertension and their relation to cardiac hypertrophy. J Hypert-ens 1988; 6: 293–297.Google Scholar
  122. 121.
    Levenson J, Simon AC, Cambien FA, Beretti C. Cigarette smoking and hypertension: factors independently associated with blood hyperviscosity and arterial rigidity. Arteriosclerosis 1987; 7: 572–577.PubMedCrossRefGoogle Scholar
  123. 122.
    Razavian S, Del Pino M, Simon A, Levenson J. Increase in erythrocyte disaggregation shear stress in hypertension. Hypertension 1992; 20: 247–252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Stéphane Laurent

There are no affiliations available

Personalised recommendations