Advertisement

Some characteristics of genetic variants of Tubifex tubifex (Müller, 1774) (Oligochaeta: Tubificidae) in laboratory cultures

  • Andreas Anlauf
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 95)

Abstract

Genetic variants of the oligochaete Tubifex tubifex were identified with enzyme electrophoresis and subsequently reared in laboratory cultures. Three types are abundant in field populations. Individuals that show homozygotic bands of glucosephosphate-isomerase (GPI) 22 together with isocitratedehydrogenase (IDH) 35 were labeled Type A. Type B is characterized by GPI 23 together with IDH 11 and Type C is characterized by GPI 11 with either IDH 34 or IDH 33. Initial results on freshweights of adults and cocoon production revealed differences between the two main types, A and B. In the same period, Type B reached higher weights and produced five times as many cocoons as Type A, whereas number of eggs per cocoon were not different between these Types. Type B also had the lowest mortality in 16-week experiments with changing temperatures.

Key words

oligochaetes Tubifex tubifex enzyme electrophoresis cultures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anlauf, A., 1989. Die Charakterisierung von Populationen des Schlammröhrenwurms Tubifex tubifex (Müller) mit Hilfe von enzymelektrophoretischen, populationsgenetischen und ökologischen Methoden. Ph. D. Thesis, Universität Köln, Germany, 132 pp.Google Scholar
  2. Anlauf, A., 1990. Cyst formation of Tubifex tubifex (Müller) — an adaptation to survive food deficiency and drought. Hydrobiologia 190: 79–82.CrossRefGoogle Scholar
  3. Berndt, J., 1988. Die ökologische Bewertung von niederrheinischen Baggerseen mit Hilfe von Makrozoobenthosarten als Bioindikatoren. Ph.D. Thesis, Universität Köln, Germany, pp.Google Scholar
  4. Bonacina, C., G. Bonomi & C. Monti, 1987. Progress in cohort cultures of aquatic oligochaeta. Hydrobiologia 155: 163–171.CrossRefGoogle Scholar
  5. Bonacina, C., G. Bonomi & C. Monti, 1989. Population analysis in mass cultures of Tubifex tubifex. Hydrobiologia 180: 127–134.CrossRefGoogle Scholar
  6. Bonomi, G. & G. Dicola, 1980. Population dynamics of Tubifex tubifex, studied by means of a new model. In R.O. Brinkhurst & D.G. Cook (eds), Aquatic Oligochaete Biology. Plenum Press, New York: 185–203.CrossRefGoogle Scholar
  7. Finogenova, N.P. & T.M. Lobasheva, 1987. Growth of Tubifex tubifex Müller (Oligochaeta, Tubificidae) under various trophic conditions. Int. Revue ges. Hydrobiol. 72: 709–726.CrossRefGoogle Scholar
  8. Gaffney, P.M., 1990. Enzyme heterozygosity, growth rate, and viability in Mytilus edulis: another look. Evolution 44: 204–210.CrossRefGoogle Scholar
  9. Garton, D.W., R.K. Koehn & T.M. Scott, 1985. The physiological energetics of growth in the clam, Mulinia lateralis: an explanation for the relationship between growth rate and individual heterozygosity. In P.E. Gibbs (ed.), Proc. 19th Europ. Mar. Biol. Symp. Cambridge University Press, Cambridge, England: 455–463.Google Scholar
  10. Hakanson, L., 1984. On the relationship between lake trophic level and lake sediments. Wat. Res. 18: 303–314.CrossRefGoogle Scholar
  11. Hipp, E., U.A. Sedlmaier & K.H. Hoffmann, 1984. Aerobic metabolic trends after anoxia in the freshwater oligochaete Tubifex. Comp. Biochem. Physiol. 78B: 125–129.Google Scholar
  12. Hoffmann, K.H., J. Seuss, E. Hipp & U.A. Sedlmaier, 1986. Aerobic and anaerobic metabolism in Tubifex, a freshwater oligochaete. Zool. Beitr. 30: 153–170.Google Scholar
  13. Koehn, R.K., & P.M. Gaffney, 1984. Genetic heterozygosity and growth rate in Mytilus edulis. Mar. Biol. 82: 1–7.CrossRefGoogle Scholar
  14. Koehn, R.K., & S.E. Sumway, 1982. A genetic/physiological explanation for differential growth rate among individuals of the american oyster Crassostrea virginica (Gmelin). Mar. Biol. Letters 3: 35–42.Google Scholar
  15. Korn, H., 1963. Studien zur Ökologie der Oligochaeten in der oberen Donau unter Berücksichtigung der Abwassereinwirkungen. Arch. Hydrobiol. Suppl. 27. 181 pp.Google Scholar
  16. Kosiorek, D., 1974. Development cycle of Tubifex tubifex (Müll.) in experimental culture. Pol. Arch. Hydrobiol. 21: 411–422.Google Scholar
  17. Lazim, M.N., & M.A. Learner, 1987. The influence of sediment composition and leaf litter on the distribution of tubificid worms (Oligochaeta). Oecologia 72: 131–136.CrossRefGoogle Scholar
  18. Lazim, M.N., M.A. Learner & S. Cooper, 1989. The importance of worm identity and life history in determining the vertical distribution of tubificids (Oligochaeta) in a riverine mud. Hydrobiologia 178: 81–92.CrossRefGoogle Scholar
  19. Marian, M.T. & T.J. Pandian, 1984. Culture and harvesting techniques for Tubifex tubifex. Aquaculture 42: 303–315.CrossRefGoogle Scholar
  20. McMurtry, M.J., D.J. Rapport & K.E. Chua, 1983. Substrate selection by tubificid oligochaetes. Can. J. Fish. aquat. Sci. 40: 1639–1646.CrossRefGoogle Scholar
  21. Milbrink, G., 1973. On the Use of Indicator Communities of Tubificidae and some Lumbriculidae in the assessment of water pollution in Swedish lakes. Zoon 1: 125–139.Google Scholar
  22. Milbrink, G., 1978. Indicator communities of oligochaetes in Scandinavian lakes. Verh. int. Ver. Limnol. 20: 2406–2411.Google Scholar
  23. Milbrink, G., 1983. An improved environmental index based on the relative abundance of oligochaete species. Hydro-biologia 102: 89–97.Google Scholar
  24. Paoletti, A., 1989. Cohort cultures of Tubifex tubifex forms. Hydrobiologia 180: 143–150.CrossRefGoogle Scholar
  25. Poddubnaya, T., 1980. Life cycles of mass species of Tubifi-cidae. In R.O. Brinkhurst & D.G. Cook (eds), Aquatic Oligochaete Biology. Plenum Press, New York: 175–184.CrossRefGoogle Scholar
  26. Precht, H., J. Christophersen, H. Hessel & W. Lascher, 1973. Temperature and Life, Springer, Berlin.CrossRefGoogle Scholar
  27. Reynoldson, T.B., 1987. The role of environmental factors in the ecology of tubificid oligochaetes: an experimental study. Holarct. Ecol. 10: 241–248.Google Scholar
  28. Reynoldson, T.B., 1983. The population biology of the aquatic Oligochaeta in the english Lake district. Ph.D. Thesis, University of Lancaster, England. 245 pp.Google Scholar
  29. Rybak, J.L., 1969. Bottom sediments of the lakes of various trophic type. Ekol. pol. 17: 661–662.Google Scholar
  30. Sachs, L., 1978. Angewandte Statistik. Springer, Berlin. 552 pp.Google Scholar
  31. Saether, O.A., 1980. The influence of eutrophication on deep lake invertebrate communities. Prog. Wat. Tech. 12: 161–180.Google Scholar
  32. Särkkä, J., 1987. The occurrence of oligochaetes in lake chains receiving pulp mill waste and their relation to eutrophication on the trophic scale. Hydrobiologia 155: 259–267.CrossRefGoogle Scholar
  33. Särkkä, J. & J. Aho, 1980. Distribution of aquatic oligochaetes in the finnish Lake District. Freshwat. Biol. 10: 197–206.CrossRefGoogle Scholar
  34. Seuss, R.J., 1981. Anaerobiosestoffwechsel und Gluconeo-genese bei Tubifex sp. (Annelida, Oligochaeta). Ph.D Thesis, Universität Ulm, Germany, 159 pp.Google Scholar
  35. Shaw, C.R. & R. Prasad, 1970. Starch gel electrophoresis of enzymes — a compilation of recipes. Biochem. Genetics 4: 297–320.CrossRefGoogle Scholar
  36. Timm, T., 1974. On the life cycles of the aquatic oligochaeta in aquaria. Acad. Sci. Estonian SSR Inst. Zool. Bot. Hy-drobiol. Res. 6: 97–118.Google Scholar
  37. Wagner, G., 1968. Zur Beziehung zwischen der Besiedlungs-dichte von Tubificiden und dem Nahrungsangebot im Sediment. Int. Revue ges. Hydrobiol. 53: 715–721.CrossRefGoogle Scholar
  38. Wisniewski, R.J., 1979. Investigations into the reproduction and mortality of Tubificidae in lakes. Ecol. Pol. 27: 463–479.Google Scholar
  39. Wolf, H.G., 1982. A comparison of different electrophoretic techniques for the detection of isoenzymes in single daph-nids. Arch. Hydrobiol. 95: 521–531.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Andreas Anlauf
    • 1
  1. 1.Lehrstuhl für Physiologische ÖkologieZoologisches Institut der Universität KölnKöln 41Germany

Personalised recommendations