Advertisement

The Spinal Route of Analgesia: Opioids and Future Options

  • M. J. Cousins
  • L. E. Mather
  • N. Smart
  • D. White
Part of the Developments in Critical Care Medicine and Anesthesiology book series (DCCA, volume 29)

Abstract

The demonstration by Yaksh and Rudy (1) that intrathecal morphine in rats produced long-lasting, dose-dependent, and naloxonereversible analgesia led to the first use of spinal opioids in humans by Wang et al. (2) in 1979. Within months after the publication of this study of intrathecal morphine in cancer patients, Behar et al. (3) reported the epidural use of morphine in 10 patients and Cousins et al. (4) reported epidural use of meperidine. In the latter study, it was found that the time course of analgesia correlated with that of CSF rather than plasma meperidine concentrations, thus indicating a spinal site of action.

Keywords

Dorsal Horn Respiratory Depression Antinociceptive Effect Epidural Morphine Intrathecal Morphine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yaksh TL, Rudy TA: Analgesia mediated by a direct spinal action of narcotics. Science 192: 1357–1358, 1976PubMedCrossRefGoogle Scholar
  2. 2.
    Wang JK, Nauss LA, Thomas JE: Pain relief by intrathecally applied morphine in man. Anesthesiology 50: 149–151, 1979PubMedCrossRefGoogle Scholar
  3. 3.
    Behar M, Magora F, Olshwang D, Davidson JT: Epidural morphine in treatment of pain. Lancet 1(8115)527–529, 1979PubMedCrossRefGoogle Scholar
  4. 4.
    Cousins MJ, Mather LE, Glynn CJ, et al: Selective spinal analgesia (letter). Lancet 1(8126): 1141–1142, 1979PubMedCrossRefGoogle Scholar
  5. 5.
    Glynn CJ, Mather LE, Cousins MJ, et al: Spinal narcotics and respiratory depression (letter). Lancet 2(8138): 356–357, 1979PubMedCrossRefGoogle Scholar
  6. 6.
    Liolios A, Andersen FH: Selective spinal analgesia (letter). Lancet 2(8138): 357, 1979PubMedCrossRefGoogle Scholar
  7. 7.
    Scott DB, McClure J: Selective epidural analgesia (letter). Lancet 1(8131): 1410–1411, 1979PubMedCrossRefGoogle Scholar
  8. 8.
    Boas RA: Hazards of epidural morphine. Anaesth Intensive Care 8: 377–378, 1980PubMedGoogle Scholar
  9. 9.
    Cousins MJ, Glynn CJ, Wilson PR, et al: Aspects of epidural morphine (letter). Lancet 2(8142): 584, 1979PubMedGoogle Scholar
  10. 10.
    Cousins MJ, Glynn CJ, Wilson PR, et al: Epidural morphine (letter). Anaesth Intensive Care 8: 217–219, 1980PubMedGoogle Scholar
  11. 11.
    Davies GK, Tolhurst-Cleaver CL, James TL: Respiratory depression after intrathecal narcotics. Anaesthesia 35: 1080–1083, 1980PubMedCrossRefGoogle Scholar
  12. 12.
    Reiz S, Westberg M: Side effects of epidural morphine (letter). Lancet 2(8187): 203–204, 1980PubMedCrossRefGoogle Scholar
  13. 13.
    Bromage PR, Camporesi E, Chestnut D: Epidural narcotics for postoperative analgesia. Anesth Analg 59: 473–480, 1980PubMedCrossRefGoogle Scholar
  14. 14.
    Torda TA, Pybus DA: Extradural administration of morphine and bupivacaine. A controlled comparison. Br J Anaesth 56: 141–146, 1984PubMedCrossRefGoogle Scholar
  15. 15.
    Glynn CJ, Mather LE, Cousins MJ, et al: Peridural meperidine in humans: Analgesic response, pharmacokinetics and transmission into CSF. Anesthesiology 55: 520–526, 1981PubMedCrossRefGoogle Scholar
  16. 16.
    Gustafsson LL, Schildt B, Jacobsen K: Adverse effects of extradural and intrathecal opiates: Report of a nationwide survey in Sweden. Br J Anaesth 54: 479–486, 1982PubMedCrossRefGoogle Scholar
  17. 17.
    Ebert J, Varner PD: The effective use of epidural morphine sulfate for postoperative orthopedic pain. Anesthesiology 53: 257–258, 1980PubMedCrossRefGoogle Scholar
  18. 18.
    Barron DW, Strong JE: Postoperative analgesia in major orthopaedic surgery. Epidural and intrathecal opiates. Anaesthesia 36: 937–941, 1981PubMedCrossRefGoogle Scholar
  19. 19.
    Cousins MJ, Plummer JP: Spinal opioids in acute and chronic pain, The design of analgesic clinical trials. Advances in Pain Research and Therapy. Edited by Max M, Portenoy R, Laska E. New York, Raven Press, 1991, pp. 457–479Google Scholar
  20. 20.
    Revill SI, Robinson JO, Rosen M, Hogg MI: The reliability of a linear analogue scale for evaluating pain. Anaesthesia 31: 1191–1198, 1976PubMedCrossRefGoogle Scholar
  21. 21.
    Brownridge P, Frewin DB: A comparative study of techniques of postoperative analgesia following caesarean section and lower abdominal surgery. Anaesth Intensive Care 13: 123–130, 1985PubMedGoogle Scholar
  22. 22.
    Ellis DJ, Millar WL, Reisner LS: A randomized double-blind comparision of epidural versus intravenous fentanyl infusion of analgesia after cesarean section. Anesthesiology 72: 981–986, 1990PubMedCrossRefGoogle Scholar
  23. 23.
    Loper KA, Ready LB, Downey M, et al: Epidural and intravenous fentanyl infusions are clinically equivalent after knee surgery. Anesth Analg 70: 72–75, 1990PubMedCrossRefGoogle Scholar
  24. 24.
    Brownridge P, Cohen SE: Neural blockade for obstetrics and gynecology surgery, Neural Blockade in Clinical Anesthesia and Management of Pain. Edited by Cousins MJ, Bridenbaugh PO. Philadelphia, J.B. Lippincott, 1988, pp. 593–634Google Scholar
  25. 25.
    Booker PD, Wilkes RG, Bryson JHL, Beddard J: Obstetric pain relief using epidural morphine. Anaesthesia 35: 377–379, 1980PubMedCrossRefGoogle Scholar
  26. 26.
    Hughes SC, Rosen MA, Shnider SM, et al: Maternal and neonatal effects of epidural morphine for labor and delivery. Anesth Analg 63: 319–324, 1984PubMedCrossRefGoogle Scholar
  27. 27.
    Writer WDR: Epidural morphine for post-caesarean analgesia (editorial). Can J Anaesth 37: 608–612, 1990PubMedCrossRefGoogle Scholar
  28. 28.
    Currie LES, O’Sullivan GM, Seegobin R: Epidural fentanyl in labour. Anaesthesia 36: 965–969, 1981CrossRefGoogle Scholar
  29. 29.
    Perriss BW: Epidural pethidine in labour. A study of dose requirements. Anaesthesia 35: 380–382, 1980PubMedCrossRefGoogle Scholar
  30. 30.
    Cohen SE, Tan S, Albright GA, Halpern J: Epidural fentanyl/bupivacaine mixtures for obstetric analgesia. Anesthesiology 67: 403–407, 1987PubMedCrossRefGoogle Scholar
  31. 31.
    Baraka A, Maktabi M, Noueihid R: Epidural meperidine-bupivacaine for obstetric analgesia. Anesth Analg 61: 652–656, 1982PubMedGoogle Scholar
  32. 32.
    Hammonds W, Bramwell RS, Hug CC, et al: A comparison of epidural meperidine and bupivacaine for relief of labor pain. Anesth Analg 61: 187–188, 1982Google Scholar
  33. 33.
    Chestnut DH, Pollack KL, Laszewski LJ, et al: Continuous epidural infusion of bupivacaine-fentanyl during the second stage of labour (abstract). Anesthesiology 71: A841, 1989CrossRefGoogle Scholar
  34. 34.
    Brownridge P: Epidural bupivacaine-pethidine mixture: Clinical experience using a low-dose combination in labour. Aust N Z J Obstet Gynaecol 28: 17–24, 1988PubMedCrossRefGoogle Scholar
  35. 35.
    Stenseth R, Sellevold O, Breivik H: Epidural morphine for postoperative pain: Experience with 1085 patients. Acta Anaesthesiol Scand 29: 148–156, 1985PubMedCrossRefGoogle Scholar
  36. 36.
    Fuller JG, McMorland GH, Douglas MJ, Palmer L: Epidural morphine for analgesia after caesarean section: A report of 4,880 patients. Can J Anaesth 37: 636–640, 1990PubMedCrossRefGoogle Scholar
  37. 37.
    Cousins MJ, Mather LE: Intrathecal and epidural administration of opioids. Anesthesiology 61: 276–310, 1984PubMedCrossRefGoogle Scholar
  38. 38.
    Lanz E, Theiss D, Riess W, Sommer U: Epidural morphine for postoperative analgesia: A double-blind study. Anesth Analg 61: 236–240, 1982PubMedCrossRefGoogle Scholar
  39. 39.
    Harrison DM, Sinatra R, Morgese L, Chung JH: Epidural narcotic and patient-controlled analgesia for post-cesarean section pain relief. Anesthesiology 68: 454–457, 1988PubMedCrossRefGoogle Scholar
  40. 40.
    Klinck JR, Lindop MJ: Epidural morphine in the elderly. A controlled trial after upper abdominal surgery. Anaesthesia 37: 907–912, 1982PubMedCrossRefGoogle Scholar
  41. 41.
    Camann WR, Loferski BL, Fanciullo GJ, et al: Does epidural administration of butorphanol offer any clinical advantage over the intravenous route? A double-blind, placebo-controlled trial. Anesthesiology 76: 216–220, 1992PubMedCrossRefGoogle Scholar
  42. 42.
    Eisenach JC, Grice SC, Dewan DM: Patient-controlled analgesia following cesarean section: A comparison with epidural and intramuscular narcotics. Anesthesiology 68: 444–448, 1988PubMedCrossRefGoogle Scholar
  43. 43.
    Reiz S, Ahlin J, Ahrenfeld B, et al: Epidural morphine for postoperative pain relief. Acta Anaesthesiol Scand 25: 111–114, 1981PubMedCrossRefGoogle Scholar
  44. 44.
    Donadoni R, Roily G, Noorduin H, et al: Epidural sufentanil for postoperative pain relief. Anaesthesia 40: 634–638, 1985PubMedCrossRefGoogle Scholar
  45. 45.
    Wells DG, Davies G: Profound central nervous system depression from epidural fentanyl for extracorporeal shock wave lithotripsy. Anesthesiology 67: 991–992, 1987PubMedCrossRefGoogle Scholar
  46. 46.
    Rawal N, Möllefors K, Axelsson K, et al: An experimental study of urodynamic effects of epidural morphine and of naloxone reversal. Anesth Analg 62: 641–647, 1983PubMedCrossRefGoogle Scholar
  47. 47.
    Yaksh TL, Elde RP: Factors governing release of methionine enkephalin-like immunoreactivity from mesencephalon and spinal cord of the cat in vivo. J Neurophysiol 46: 1056–1075, 1981PubMedGoogle Scholar
  48. 48.
    Ballantyne JC, Loach AB, Carr DB: Itching after epidural and spinal opiates. Pain 33: 149–160, 1988PubMedCrossRefGoogle Scholar
  49. 49.
    Brownridge P: Epidural and intrathecal opiates for postoperative pain relief (letter). Anaesthesia 38: 74–76, 1983PubMedCrossRefGoogle Scholar
  50. 50.
    Bromage PR: The price of intraspinal narcotic analgesia: Basic constraints. Anesth Analg 60: 461–463, 1981PubMedGoogle Scholar
  51. 51.
    Naulty JS, Johnson M, Burger GA, et al: Epidural fentanyl for postcesarean delivery pain management. Anesthesiology 59. A415, 1983Google Scholar
  52. 52.
    Evron S, Samueloff A, Simon A, et al: Urinary function during epidural analgesia with methadone and morphine in post-cesarean section patients. Pain 23: 135–144, 1985PubMedCrossRefGoogle Scholar
  53. 53.
    Ready LB, Oden R, Chadwick HS, et al: Development of an anesthesiology-based postoperative pain management service. Anesthesiology 68: 100–106, 1988PubMedCrossRefGoogle Scholar
  54. 54.
    Bromage PR, Camporesi EM, Durant PA, Neilsen CH: Nonrespiratory side effects of epidural morphine. Anesth Analg 61: 490–495, 1982PubMedGoogle Scholar
  55. 55.
    Knill RL, Clement JL, Thompson WR: Epidural morphine causes delayed and prolonged ventilatory depression. Can Anaesth Soc J 28: 537–543, 1981PubMedCrossRefGoogle Scholar
  56. 56.
    Lanz E, Kehrberger E, Theiss D: Epidural morphine: A clinical double-blind study of dosage. Anesth Analg 64: 786–791, 1985PubMedGoogle Scholar
  57. 57.
    Ahuja BR, Strunin L: Respiratory effects of epidural fentanyl. Changes in end-tidal CO2 and respiratory rate following single doses and continuous infusions of epidural fentanyl. Anaesthesia 40: 949–955, 1985PubMedCrossRefGoogle Scholar
  58. 58.
    Gourlay GK, Cherry DA, Cousins MJ: Cephalad migration of morphine in CSF following lumbar epidural administration in patients with cancer pain. Pain 23: 317–326, 1985PubMedCrossRefGoogle Scholar
  59. 59.
    Gourlay GK, Cherry DA, Plummer JL, et al: The influence of drug polarity on the absorption of opioid drugs into CSF and subsequent cephalad migration following lumbar epidural administration: Application to morphine and pethidine. Pain 31: 297–305, 1987PubMedCrossRefGoogle Scholar
  60. 60.
    Gourlay GK, Murphy TM, Plummer JL, et al: Pharmacokinetics of fentanyl in lumbar and cervical CSF following lumbar epidural and intravenous administration. Pain 38: 253–259, 1989PubMedCrossRefGoogle Scholar
  61. 61.
    Sjostrom S, Tamsen A, Persson MP, Hartvig P: Pharmacokinetics of intrathecal morphine and meperidine in humans. Anesthesiology67: 889–895, 1987PubMedCrossRefGoogle Scholar
  62. 62.
    Sandler AN: Epidural opiate analgesia for acute pain relief. Can J Anaesth 37: 533–534, 1990Google Scholar
  63. 63.
    Rawal N, Arnér S, Gustafsson LL, Allvin R: Present state of extradural and intrathecal opioid analgesia in Sweden. Br J Anaesth 59: 791–799, 1987PubMedCrossRefGoogle Scholar
  64. 64.
    Etches RC, Sandler AN, Daley MD: Respiratory depression and spinal opioids. Can J Anaesth 36: 165–185, 1989PubMedCrossRefGoogle Scholar
  65. 65.
    Writer WDR, Hurtig JB, Evans D, et al: Epidural morphine prophylaxis of postoperative pain: Report of a double blind multicentre study. Can Anaesth Soc J 32: 330–338, 1985PubMedCrossRefGoogle Scholar
  66. 66.
    Jyu C, Lamb JD: Respiratory depression following epidural morphine. Can Anaesth J 32: 99–100, 1982CrossRefGoogle Scholar
  67. 67.
    Rawal N, Wattwil M: Respiratory depression after epidural morphine—An experimental and clinical study. Anesth Analg 63: 8–14, 1984PubMedGoogle Scholar
  68. 68.
    Cousins MJ, Cherry DA, Gourlay GK: Acute and chronic pain: Use of spinal opioids, Neural Blockade in Clinical Anesthesia and Management of Pain. Edited by Cousins MJ, Bridenbaugh PO. Philadelphia, J.B. Lippincott, 1988, pp. 955–1029Google Scholar
  69. 69.
    Eisenach JC, Dewan DM, Rose JC, Angelo JM: Epidural clonidine produces antinociception, but not hypotension, in sheep. Anesthesiology 66: 496–501, 1987PubMedCrossRefGoogle Scholar
  70. 70.
    Bentley GA, Copeland IW, Starr J: The actions of some alpha adrenoceptor agonists and antagonists in antinociceptive test in mice. Clin Exp Pharmacol Physiol 4: 405–419, 1977PubMedCrossRefGoogle Scholar
  71. 71.
    Yaksh TL: Spinal opiate analgesia: Characteristics and principles of action. Pain 11: 293–346, 1981PubMedCrossRefGoogle Scholar
  72. 72.
    Kalia PK, Madan R, Batra RK, et al: Clinical study on epidural clonidine for postoperative analgesia. Indian J Med Res 83: 550–552, 1986PubMedGoogle Scholar
  73. 73.
    Boico O, Bonnet F, Rostaing S, et al: Epidural clonidine produces postoperative analgesia (abstract). Anesthesiology 69: A388, 1988CrossRefGoogle Scholar
  74. 74.
    Mok MS, Wang JJ, Chan JH, et al: Analgesia effect of epidural clonidine and nalbuphine in combined use (abstract). Anesthesiology 69: A398, 1988CrossRefGoogle Scholar
  75. 75.
    Bonnet F, Boico O, Rostaing S, et al: Clonidine for postoperative analgesia: Epidural versus IM study (abstract). Anesthesiology 69: A395, 1988CrossRefGoogle Scholar
  76. 76.
    Kuraishi Y, Hirota N, Sato Y, et al: Noradrenergic inhibition of the release of substance P from the primary afferents in the rabbit spinal dorsal horn. Brain Res 359: 177–182, 1985PubMedCrossRefGoogle Scholar
  77. 77.
    Fleetwood-Walker SM, Mitchell R, Hope PJ, et al: An alpha-2 receptor mediates the selective inhibition by noradrenaline of nociceptive responses of identified dorsal horn neurones. Brain Res 334: 243–254, 1985PubMedCrossRefGoogle Scholar
  78. 78.
    Gordh T Jr: Epidural clonidine for treatment of postoperative pain after thoracotomy. A double-blind, placebo-controlled study. Acta Anaesthesiol Scand 32: 702–709, 1988PubMedCrossRefGoogle Scholar
  79. 79.
    Germain IT, Neron A, Lamssy A: Analgesic effect of epidural clonidine, Proceedings of the Vlth World Congress on Pain. Edited by Dubner R, Gebhart GF, Bond MR. New York, Elsevier Science Publishers, 1988, pp. 472–476Google Scholar
  80. 80.
    Eisenach JC, Lysak SZ, Viscomi CM: Epidural clonidine analgesia following surgery: Phase I. Anesthesiology 71: 640–646, 1989PubMedCrossRefGoogle Scholar
  81. 81.
    Coombs DW, Saunders RL, LaChance D, et al: Intrathecal morphine tolerance: Use of intrathecal clonidine, DADLE, and intraventricular morphine. Anesthesiology 62: 357–363, 1985CrossRefGoogle Scholar
  82. 82.
    Coombs DW, Saunders RL, Fratkin JD, et al: Continuous intrathecal hydromorphone and clonodine for intractable cancer pain. J Neurosurg 64: 890–894, 1986PubMedCrossRefGoogle Scholar
  83. 83.
    Glynn CJ, Teddy PJ, Moore RA, et al: Role of spinal noradrenergic spinal system in transmission of pain in patients with spinal cord injury. Lancet 2(8518): 1249–1250, 1986PubMedCrossRefGoogle Scholar
  84. 84.
    Byrd BF III, Collins HW, Primm RK: Risk factors for severe bradycardia during oral clonidine therapy for hypertension. Arch Intern Med 148: 729–733, 1988PubMedCrossRefGoogle Scholar
  85. 85.
    Metz SA, Halter JB, Robertson RP: Induction of defective insulin secretion and impaired glucose tolerance by clonidine. Selective stimulation of metabolic alpha-adrenergic pathways. Diabetes 27: 554–562, 1978PubMedGoogle Scholar
  86. 86.
    Bonnet F, Boico O, Rostaing S, et al: Clonidine-induced analgesia in postoperative patients: Epidural versus intramuscular administration. Anesthesiology 72: 423–427, 1990PubMedCrossRefGoogle Scholar
  87. 87.
    Maze M, Segal IS, Bloor BC: Clonidine and other alpha-2 adrenergic agonists: Strategies for the rational use of these novel anesthetic agents. J Clin Anesth 1: 146–157, 1988PubMedCrossRefGoogle Scholar
  88. 88.
    Watkins JC, Krogsgaard-Larsen P, Honore T: Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11: 25–33, 1990PubMedCrossRefGoogle Scholar
  89. 89.
    Yaksh TL: Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav 22: 845–858, 1985PubMedCrossRefGoogle Scholar
  90. 90.
    Hylden JL, Wilcox GL: Pharmacological characterization of substance P-induced nociception in mice: Modulation by opioid and noradrenergic agonists at the spinal level. J Pharmacol Exp Ther 226: 398–404, 1983PubMedGoogle Scholar
  91. 91.
    Wilcox GL: Excitatory neurotransmitters and pain, Proceedings of Vlth World Congress on Pain. Edited by Bond MR, Charlton JE, Woolf CJ. Amsterdam, Elsevier Science Publishers, 1991, pp. 97–118Google Scholar
  92. 92.
    Spaulding TC, Venafro JJ, Ma MG, Fielding S: The dissociation of the antinociceptive effect of clonidine from supraspinal structures. Neuropharmacology 18: 103–105, 1979PubMedCrossRefGoogle Scholar
  93. 93.
    Howe JR, Wang JY, Yaksh TL: Selective antagonism of the antinociceptive effect of intrathecally applied alpha adrenergic agonists by intrathecal prazosin and intrathecal yohimbine. J Pharmacol Exp Ther 224: 552–558, 1983PubMedGoogle Scholar
  94. 94.
    Terenius L: Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol 32: 317–320, 1973CrossRefGoogle Scholar
  95. 95.
    Sullivan AF, Dashwood MR, Dickenson AH: Alpha-2 adrenoreceptor modulation of nociception in rat spinal cord: Location, effects and interactions with morphine. Eur J Pharmacol 138: 169–177, 1987PubMedCrossRefGoogle Scholar
  96. 96.
    Plummer JL, Cmielewski PL, Reynolds GD, et al: Influence of polarity on dose-response relationships of intrathecal opioids in rats. Pain 40: 339–347, 1990PubMedCrossRefGoogle Scholar
  97. 97.
    Goodchild CS, Serrao JM: Intrathecal midazolam in the rat: evidence for spinally-mediated analgesia. Br J Anaesth 59: 1563–1570, 1987PubMedCrossRefGoogle Scholar
  98. 98.
    Goodchild CS, Noble J: The effects of intrathecal midazolam on sympathetic nervous system reflexes in man—A pilot study. Br J Clin Pharmacol 23: 279–285, 1987PubMedCrossRefGoogle Scholar
  99. 99.
    Yanez A, Sabbe MB, Stevens CW, Yaksh TL: Interaction of midazolam and morphine in the spinal cord of the rat. Neuropharmacology 29: 359–364, 1990PubMedCrossRefGoogle Scholar
  100. 100.
    Wilson PR, Yaksh TL: Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur J Pharmacol 51: 323–330, 1978PubMedCrossRefGoogle Scholar
  101. 101.
    Smith DF: Stereoselectivity of spinal neurotransmission: Effects of baclofen enantiomer on tail-flick reflex in rats. J Neural Transm 60: 63–67, 1984PubMedCrossRefGoogle Scholar
  102. 102.
    Hammond DL, Drower EJ: Effects of intrathecally administered THIP, baclofen and muscimol on nociceptive threshold. Eur J Pharmacol 103: 121–125, 1984PubMedCrossRefGoogle Scholar
  103. 103.
    Sawynok J: Baclofen activates two distinct receptors in the rat spinal cord and guinea pig ileum. Neuropharmacology 25: 795–798, 1986PubMedCrossRefGoogle Scholar
  104. 104.
    Yaksh TL, Reddy SVR: Studies in the primate on the analgesic effects associated with intrathecal actions of opiates, alpha-adrenergic agonists and baclofen. Anesthesiology 54: 451–467, 1981PubMedCrossRefGoogle Scholar
  105. 105.
    Price GW, Wilkin GP, Turnbull MJ, Bowery NG: Are baclofen sensitive GABAB receptors present on primary afferent terminals of the spinal cord? Nature 307: 71–74, 1984PubMedCrossRefGoogle Scholar
  106. 106.
    Davidoff RA, Sears ES: The effects of Lioresal on synaptic activity in the isolated spinal cord. Neurology 24: 957–963, 1974PubMedCrossRefGoogle Scholar
  107. 107.
    Henry JL, Ben-Ari Y: Actions of the p-chlorophenyl derivative of GABA, Lioresal, on nociceptive and non-nociceptive units in the spinal cord of the cat. Bran Res 117: 540–544, 1976CrossRefGoogle Scholar
  108. 108.
    Fox S, Krnjevic K, Morris ME, et al: Action of baclofen on mammalian synaptic transmission. Neuroscience 3: 495–515, 1978PubMedCrossRefGoogle Scholar
  109. 109.
    Henry JL: Effects of intravenously administered enantiomers of baclofen on functionally identified units in lumbar dorsal horn of the spinal cat. Neuropharmacology 21: 1073–1083, 1982PubMedCrossRefGoogle Scholar
  110. 110.
    Henry JL: Pharmacological studies on the prolonged depressant effects of baclofen on lumbar dorsal horn units in the cat. Neuropharmacology 21: 1085–1093, 1982PubMedCrossRefGoogle Scholar
  111. 111.
    Kangrga I, Randic M, Jeftinija S: Adenosine and (-) baclofen have a neuromodulatory role in the rat spinal dorsal horn. Soc Neurosci Abstr 13: 1134–1136, 1987Google Scholar
  112. 112.
    Sawynok J, Moochhala SM, Pillay DJ: Substance P, injected intrathecally, antagonizes the spinal antinociceptive effect of morphine, baclofen and noradrenaline. Neuropharmacology 23: 741–747, 1984PubMedCrossRefGoogle Scholar
  113. 113.
    Crunelli V, Haby M, Jassik-Gerschenfeld D, et al: CI and K+ dependent inhibitory postsynaptic potentials evoked by interneurones of the rat lateral geniculate neurones. J Physiol (Lond) 399: 153–176, 1988Google Scholar
  114. 114.
    Dolphin AC, Scott RH: Calcium channel currents and their inhibition by (−) baclofen in rat sensory neurones: Modulation by guanine nucleotides. J Physiol (Lond) 386: 1–17, 1988Google Scholar
  115. 115.
    Soltesz I, Haby M, Leresche N, Crunelli V: The GABAB antagonist phaclofen inhibits the late K+ dependent IPSP in cat and rat thalamic and hippocampal neurones. Brain Res 448: 351–354, 1988PubMedCrossRefGoogle Scholar
  116. 116.
    Aanonsen LM, Wilcox GL: Muscimol, gamma-aminobutyric acid receptors and excitatory amino acids in the mouse spinal cord. J Pharmacol Exp Ther 248: 1034–1038, 1989PubMedGoogle Scholar
  117. 117.
    Huang AS, Wilcox GL: Baclofen, gamma aminobutyric acid B receptors and substance P in the mouse spinal cord. J Pharmacol Exp Ther 248: 1026–1033, 1989Google Scholar
  118. 118.
    Holmgren M, Hedner J, Mellstrand T, et al: Evidence for a spinal antinociceptive effect of adenosine in the rat. Pain 2: S157, 1984Google Scholar
  119. 119.
    Post C: Antinociceptive effects in mice after intrathecal injection of 5-N-ethylcarboxamide adenosine. Neurosci Lett 51: 325–330, 1984PubMedCrossRefGoogle Scholar
  120. 120.
    Sawynok J, Sweeney MI, White TD: Classification of adenosine receptors mediating antinociception in the rat spinal cord. Br J Pharmacol 88: 923–930, 1986PubMedCrossRefGoogle Scholar
  121. 121.
    Sawynok J, Sweeney MI: The role of purines in nociception. Neuroscience 32: 557–569, 1989PubMedCrossRefGoogle Scholar
  122. 122.
    DeLander GE, Hopkins CJ: Involvement of A2 adenosine receptors in spinal mechanisms of antinociception. Eur J Pharmacol 139: 215–223, 1987PubMedCrossRefGoogle Scholar
  123. 123.
    Fastbom J, Post C, Fredholm BB: Antinociceptive effects and spinal distribution of two adenosine receptor agonists after intrathecal administration. Pharmacol Toxicol 66: 69–72, 1990PubMedCrossRefGoogle Scholar
  124. 124.
    van Calker D, Muller M, Hamprecht B: Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33: 999–1005, 1979PubMedCrossRefGoogle Scholar
  125. 125.
    Choca JI, Proudfit HK, Green RD: Characterisation of adenosine receptors in the rat spinal cord. Soc Neurosci Abstr 11: 573–577, 1985Google Scholar
  126. 126.
    Karlsten R, Gordh T Jr, Hartvig P, Post C: Effects of intrathecal injection of the adenosine receptor agonists R-phenylisopropyladenosine and N-ethylcarboxamide-adenosine on nociception and motor function in the rat. Anesth Analg 71: 60–64, 1990PubMedCrossRefGoogle Scholar
  127. 127.
    Anis NA, Berry SC, Burton NR, Lodge D: The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79: 565–575, 1983PubMedCrossRefGoogle Scholar
  128. 128.
    Kitahata LM, Taub A, Kosada Y: Lamina-specific suppression of dorsal-horn unit activity by ketamine hydrochloride. Anesthesiology 38: 4–11, 1973PubMedCrossRefGoogle Scholar
  129. 129.
    Baumeister A, Advokat C: Evidence for a supraspinal mechanism in the opioid-mediated antinociceptive effect of ketamine. Brain Res 556: 351–353, 1991CrossRefGoogle Scholar
  130. 130.
    Naguib M, Sharif AM, Seraj M, et al: Ketamine for caudal analgesia in children: Comparison with caudal bupivacaine. Br J Anaesth 67: 559–564, 1991PubMedCrossRefGoogle Scholar
  131. 131.
    Davies J, Evans RH, Herrling PL, et al: CPP, a new potent and selective NMDA antagonist. Depression of central neurons responses, affinity for [3H] D-AP5 binding sites on brain membranes and anticonvulsant activity. Brain Res 382: 169–173, 1986PubMedCrossRefGoogle Scholar
  132. 132.
    Woolf CJ, Thompson SW: The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation: Implications for the treatment of post-injury pain hypersensitivity states. Pain 44: 293–299, 1991PubMedCrossRefGoogle Scholar
  133. 133.
    Kristensen JD, Svensson B, Gordh T Jr: The NMDA-receptor antagonist CPP abolishes neurogenic ‘wind-up pain’ after intrathecal administration in humans. Pain 51: 249–253, 1992PubMedCrossRefGoogle Scholar
  134. 134.
    Bleakman D, Rusin KI, Chard PS, et al: Metabotropic glutamate receptors potentiate inotropic glutamate responses in the rat dorsal horn. Mol Pharmacol 42: 192–196, 1992PubMedGoogle Scholar
  135. 135.
    Cerne R, Randic M: Modulation of AMPA and NMDA response in rat spinal dorsal horn neurons by trans-l-aminocyclopentane-1, 3-dicarboxylic acid. Neurosci Lett 144: 180–184, 1992PubMedCrossRefGoogle Scholar
  136. 136.
    Coderre TJ, Melzack R: The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 12: 3665–3670, 1992PubMedGoogle Scholar
  137. 137.
    Millan MJ: K-opioid receptors and analgesia. Trends Pharmacol Sci 11: 70–76, 1990PubMedCrossRefGoogle Scholar
  138. 138.
    Millan MJ, Czlonkowski A, Lipkowski A, Herz A: Kappa opioid receptor mediated antinociception in the rat. II. Supraspinal in addition to spinal sites of action. J Pharmacol Exp Ther 251: 342–350, 1989PubMedGoogle Scholar
  139. 139.
    Lei S, Wilcox GL: Effects of excitatory amino acids and mu opioid agonists on nociceptive projection neurones in rat. Pain (Suppl) 5: S124, 1990CrossRefGoogle Scholar
  140. 140.
    Patel Y, Rao K, Reichlin S: Somatostatin in human cerebrospinal fluid. N Engl J Med 296: 529–533, 1977PubMedCrossRefGoogle Scholar
  141. 141.
    Massari VJ, Tizabi Y, Park CH, et al: Distribution and origin of bombesin, substance P and somatostatin in cat spinal cord. Peptides 4: 673–681, 1983PubMedCrossRefGoogle Scholar
  142. 142.
    Morton CR, Hutchison WD, Hendry IA, Duggan AW: Somatostatin: Evidence for a role in thermal nociception. Brain Res 488: 89–96, 1989PubMedCrossRefGoogle Scholar
  143. 143.
    Carli P, Ecoffey C, Chrubasik J, et al: Spread of analgesia and ventilatory response to CO2 following epidural somatostatin. Anesthesiology 65 (Suppl) 216, 1986CrossRefGoogle Scholar
  144. 144.
    Ackerman E, Chrubasik J, Weinstock M, Wunsch E: Effect of intrathecal somatostatin on pain threshold in rats. Schermz Pain Doleur 2: 41–42, 1985Google Scholar
  145. 145.
    Gaumann DM, Yaksh TL, Post C, et al: Intrathecal somatostatin in cat and mouse studies on pain, motor behaviour, and histopathology. Anesth Analg 68: 623–632, 1989PubMedCrossRefGoogle Scholar
  146. 146.
    Gaumann DM, Yaksh TL: Intrathecal somatostatin in rats: Antinociception only in presence of toxic effects. Anesthesiology 68: 733–742, 1988PubMedCrossRefGoogle Scholar
  147. 147.
    Long JB, Martinez-Arizala A, Kraimer JM, Haladay JW: Intrathecal somatostatin causes handlimb paralysis and reduces spinal cord blood flow in rats. Soc Neurosci 13: 1309–1313, 1987Google Scholar
  148. 148.
    Mollenholt P, Post C, Rawal N, et al: Antinociceptive and ‘neurotoxic’ actions of somatostatin in rat spinal cord after intrathecal administration. Pain 32: 95–105, 1988PubMedCrossRefGoogle Scholar
  149. 149.
    Schulze S, Roikjaer O, Hasselstrom L, et al: Epidural bupivacaine and morphine plus systemic indomethacin eliminates pain but not systemic response and convalescence after cholecystectomy. Surgery 103: 321–327, 1988PubMedGoogle Scholar
  150. 150.
    Tverskoy M, Cozacov C, Ayache M, et al: Postoperative pain after inguinal herniorrhaphy with different types of anesthesia. Anesth Analg 70: 29–35, 1990PubMedCrossRefGoogle Scholar
  151. 151.
    Tewes PA, Vella LM, Thomas S, Goll HM: Epidural fentanyl and bupivacaine combinations in patients undergoing pelvic surgery. Anesthesiology 69: 3A406, 1988CrossRefGoogle Scholar
  152. 152.
    Rucci FS, Cardamone M, Migliori P: Fentanyl and bupivacaine mixtures for extradural blockade. Br J Anaesth 57: 275–284, 1985PubMedCrossRefGoogle Scholar
  153. 153.
    Phillips G: Continuous infusion epidural analgesia in labor: The effect of adding sufentanil to 0.125% bupivacaine. Anesth Analg 67: 462–465, 1988PubMedGoogle Scholar
  154. 154.
    Vandermeulen E, Vertommen J, Van Aken H, et al: Epidural bupivacaine with sufentanil in labour. Anesthesiology 71: A844, 1989CrossRefGoogle Scholar
  155. 155.
    Chestnut DH, Laszewski LJ, Pollack KL, et al: Continuous epidural infusion of 0.0625% bupivacaine-0.0002% fentanyl during the second stage of labour. Anesthesiology 72: 613–618, 1990PubMedCrossRefGoogle Scholar
  156. 156.
    Justins DM, Knott C, Luthman J, Reynolds F: Epidural versus intramuscular fentanyl. Analgesia and pharmacokinetics in labour. Anaesthesia 38: 937–942, 1983PubMedCrossRefGoogle Scholar
  157. 157.
    Vella LM, Willatts DG, Knott C, et al: Epidural fentanyl in labour. An evaluation of the systemic contribution to analgesia. Anaesthesia 40: 741–747, 1985PubMedCrossRefGoogle Scholar
  158. 158.
    Skerman JH, Thompson BA, Goldstein M, et al: Combined continuous epidural fentanyl and bupivacaine in labor: A randomised study. Anesthesiology 63: A450, 1985CrossRefGoogle Scholar
  159. 159.
    Youngstrom R, Eastwood D, Patel H, et al: Epidural fentanyl and bupivacaine in labor: Double blind study. Anesthesiology 61: A414, 1984CrossRefGoogle Scholar
  160. 160.
    Milon D, Bentue Ferrer D, Noury D: Anesthesie peridurale pour cesarienne par association bupivacaine fentanyl. Ann Fr Anesth Reanim 2: 273–279, 1983PubMedCrossRefGoogle Scholar
  161. 161.
    Bromage PR, Kapiwal G, Tamilarasan A, et al: Influence of epinephrine and fentanyl as adjuvants on the quality of epidural blockade with 0.5% bupivacaine (abstract). Reg Anesth 13: 252, 1988Google Scholar
  162. 162.
    King MJ, Bowden MI, Cooper GM: Epidural fentanyl and 0.5% bupivacaine for elective caesarean section. Anaesthesia 45: 285–288, 1990PubMedCrossRefGoogle Scholar
  163. 163.
    Naulty JS, Datta S, Ostheimer GW, et al: Epidural fentanyl for postcesarean delivery pain management. Anesthesiology 63: 694–698, 1985PubMedCrossRefGoogle Scholar
  164. 164.
    Ackerman WE, Juneja MM, Colclough GW, Kaczorowski DM: Epidural fentanyl significantly decreases nausea and vomiting during uterine manipulation in awake patients undergoing caesarean section. Anesthesiology 69: A679, 1988CrossRefGoogle Scholar
  165. 165.
    Gaffud MP, Bansal P, Lawton C, et al: Surgical analgesia for cesarean delivery with epidural bupivacaine and fentanyl. Anesthesiology 65: 331–334, 1986PubMedCrossRefGoogle Scholar
  166. 166.
    Paech MJ, Westmore MD, Speirs HM: A double blind comparison of epidural bupivacaine and bupivacaine-fentanyl for caesarean section. Anaesth Intensive Care 18: 22–30, 1990PubMedGoogle Scholar
  167. 167.
    Noble DW, Morrison LM, Brockway MS, McClure JH: Adrenaline, fentanyl or adrenaline and fentanyl as adjuncts to bupivacaine for extradural anaesthesia in elective caesarean section. Br J Anaesth 66: 645–650, 1991PubMedCrossRefGoogle Scholar
  168. 168.
    Lee A, Simpson D, Whitefield A, Scott DB: Postoperative analgesia by continuous extradural infusion of bupivacaine and diamorphine. Br J Anaesth 60: 845–850, 1988PubMedCrossRefGoogle Scholar
  169. 169.
    Zwarts SJ, Hasenbos MAMW, Gielen MJM, Kho HG: The effect of continuous epidural analgesia with sufentanil and bupivacaineduring and after thoracic surgery on the plasma Cortisol concentration and pain relief. Reg Anesth 14: 183–188, 1989PubMedGoogle Scholar
  170. 170.
    Gregg RV, Denson DD, Knarr DC, Stueburg RC: Continuous epidural infusions of bupivacaine and morphine versus systemic narcotic analgesics for postoperative pain relief. Anesthesiology 69: A384, 1988CrossRefGoogle Scholar
  171. 171.
    Scheinin B, Asantila R, Orko R: Effect of bupivacaine and morphine on pain and bowel function after colonic surgery. Acta Anaesthesiol Scand 31: 161–164, 1987PubMedCrossRefGoogle Scholar
  172. 172.
    Taiwo YO, Miaskowski C, Levine JD: Interactions of kappa and delta opioids in the production of analgesia in animals and humans. Pain (Suppl) 5: S265, 1990CrossRefGoogle Scholar
  173. 173.
    Naulty JS, La Bove P, Datta S, et al: Epidural butorphanol/fentanyl for post-cesarean delivery analgesia. Anesthesiology 67: A463, 1987CrossRefGoogle Scholar
  174. 174.
    Bailey PL, Rhondeau S, Schafer PG, et al: Dose-response pharmacology of intrathecal morphine in human volunteers. Anesthesiology 79: 49–59, 1993PubMedCrossRefGoogle Scholar
  175. 175.
    Miller RJ: Multiple calcium channels and neuronal function. Science 235: 46–52, 1987PubMedCrossRefGoogle Scholar
  176. 176.
    Mintz IM, Adams ME, Bean BP: P-type calcium channels in rat central and peripheral neurons. Neuron 9: 85–95, 1992PubMedCrossRefGoogle Scholar
  177. 177.
    Tsien RW, Lipscombe D, Madison DV, et al: Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11: 431–438, 1988PubMedCrossRefGoogle Scholar
  178. 178.
    Holt GG IV, Dunlap K, Kream RM: Characterization of the electrically evoke release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity. J Neurosci 8: 463–471, 1988Google Scholar
  179. 179.
    Turner TJ, Adams ME, Dunlap K: Calcium channels coupled to glutamate release identified by omega-Aga-IVA. Science 258: 310–313, 1992PubMedCrossRefGoogle Scholar
  180. 180.
    Schneider M, Datta S, Strichartz G: A preferential inhibition of impulses in C-fibers of the rabbit vagus nerve by veratridine, an activator of sodium channels. Anesthesiology 74: 270–280, 1991PubMedCrossRefGoogle Scholar
  181. 181.
    Iggo A: The electrophysiological identification of single nerve fibres, with particular reference to the slowest-conducting vagal afferent fibres in the cat. J Physiol (Lond) 142: 110–126, 1958Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • M. J. Cousins
  • L. E. Mather
  • N. Smart
  • D. White

There are no affiliations available

Personalised recommendations