Skip to main content

Peritoneal lymphatics

  • Chapter

Abstract

The peritoneal lymphatics serve as a route for continuous absorption of fluids and solutes from the peritoneal cavity by convective flow [1, 2]. The important role of lymphatic drainage from the peritoneal cavity in the pathogenesis of ascites due to liver disease or malignancy is well established [3–16] and the considerable absorptive capacity of the peritoneal lymphatics has been utilized to perform intraperitoneal blood transfusions in the fetus and in children [19–21]. However, until recently, kinetic studies of peritoneal dialysis iatrogenic “ascites” have tended to focus only on fluid and solute exchange between the peritoneal microcirculation and the instilled dialysis solution and have neglected the role of the peritoneal lymphatics [22–39]. The efficiency of peritoneal dialysis is assessed by measuring solute clearances and net ultrafiltration volumes. These indices of dialysis efficacy represent the cumulative balance of transperitoneal transport into and out of the peritoneal cavity and therefore incorporate the role of backfiltration from the peritoneal cavity. Absorption from the peritoneal cavity can occur by two mechanisms; uptake via the peritoneal cavity lymphatics (translymphatic absorption) or uptake by the peritoneal capillaries (transcapillary absorption).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen L. Lymphatics and lymphoid tissues. Ann Rev Physiol 1967; 29: 197.

    Article  CAS  Google Scholar 

  2. Courtice FC, Steinbeck AW. The lymphatic drainage of plasma from the peritoneal cavity of the cat. Austral J Exp Biol Med Sci 1950; 28: 161.

    Article  CAS  Google Scholar 

  3. Hyatt RE, Smith JR. The mechanisms of ascites: physiological appraisal. Am J Med 1954; 16: 434.

    Article  PubMed  CAS  Google Scholar 

  4. Courtice FC. Ascites: the role of the lymphatics in the accumulation of ascitic fluid. Med J Aust 1959; 26: 945.

    Google Scholar 

  5. Witte MH, Witte CL, Dumont AE. Progress in liver disease: physiological factors involved in the causation of cirrhotic ascites. Gastroenterology 1971; 61: 742.

    PubMed  CAS  Google Scholar 

  6. Dumont AE, Mulholland JH. Row rate and composition of thoracic duct lymph in patients with cirrhosis. N Engl J Med 1960; 263: 471.

    Article  PubMed  CAS  Google Scholar 

  7. Barrowman JA. Liver lymph. In: Barrowman JA (ed), Physiology of the Gastrointestinal Lymphatic System. Cambridge, Cambridge University Press 1978; p. 229.

    Google Scholar 

  8. Witte CL, Witte MH, Dumont AE. Lymph imbalance in the genesis and perpetuation of the ascites syndrome in hepatic cirrhosis. Gastroenterology 1980; 78: 1059.

    PubMed  CAS  Google Scholar 

  9. Morgan AG, Terry SI. Impaired peritoneal fluid drainage in nephrogenic ascites. Clin Nephrol 1981; 15: 61.

    PubMed  CAS  Google Scholar 

  10. Bronskill MJ, Bush RS, Ege GN. A quantitative measurement of peritoneal drainage in malignant ascites. Cancer 1977; 40: 2375.

    Article  PubMed  CAS  Google Scholar 

  11. Coates G, Bush RS, Aspin N. A study of ascites using lymphoscintigraphy with 99m Tc sulfur colloid. Radiology 1973; 107: 577.

    PubMed  CAS  Google Scholar 

  12. Atkins HL, Hauser W, Richards P. Visualization of mediastinal lymph nodes after intraperitoneal administrations of 99m Tc sulfur colloid. Nuclear-medizin 1970; 9: 275.

    PubMed  CAS  Google Scholar 

  13. Kroon BBR. Overhet ontstaan en de chirurgische behandeling van maligne ascites. M. D. Thesis, University of Amsterdam 1986.

    Google Scholar 

  14. Feldman GB, Knapp RD. Lymphatic drainage of I the peritoneal cavity and its significance in ovarian cancer. Am J Obstet Gynec 1974; 119: 991.

    PubMed  CAS  Google Scholar 

  15. Feldman GB. Lymphatic obstruction in carcinomatous ascites. Cancer Res 1975; 35: 325.

    PubMed  CAS  Google Scholar 

  16. Ismail AH, Mohamed FS. Structural changes of the diaphragmatic peritoneum in patients with schistosomal hepatic fibrosis in relation to ascites. Lymphology 1986; 19: 82.

    PubMed  CAS  Google Scholar 

  17. Clausen J. Studies on the effect of intraperitoneal blood transfusion. Acta Paediat 1940; 27: 24.

    Article  Google Scholar 

  18. Cole WC, Montgomery JC. Intraperitoneal blood transfusion. Report of 237 transfusions in 117 patients in private practice. Am J Dis Child 1929; 37: 497.

    Google Scholar 

  19. Siperstein DM, Sansby JM. Intraperitoneal transfusion with citrated blood. Am J Dis Child 1923; 25: 107.

    Google Scholar 

  20. Scopes JW. Intraperitoneal transfusion of blood in newborn babies. Lancet 1963; i: 1027.

    Article  Google Scholar 

  21. Liley AW. Intrauterine transfusion of the foetus in haemolytic disease. Br Med J 1963; ii: 1107.

    Article  Google Scholar 

  22. Nolph KD, Popovich RP, Ghodes AJ, Twardowski ZJ. Determinants of low clearances of small solutes during peritoneal dialysis. Kidney Int 1978; 13: 117.

    Article  PubMed  CAS  Google Scholar 

  23. Nolph KD, Miller FN, Rubin J, Popovich R. New directions in peritoneal dialysis concepts and applications. Kidney Int 1980; 18: S111.

    Google Scholar 

  24. Nolph KD. Solute and water transport during peritoneal dialysis. Perspect Perit Dial 1983; 1: 4.

    Google Scholar 

  25. Nolph KD, Miller FN, Pyle WK, Popovich RP, Sorkin MI. An hypothesis to explain the ultrafiltration characteristics of peritoneal dialysis. Kidney Int 1981; 20: 543.

    Article  PubMed  CAS  Google Scholar 

  26. Twardowski ZJ, Janicka L. Three exchanges with a 2.5 liter volume for continuous ambulatory peritoneal dialysis. Kidney Int. 1981; 20: 281.

    Article  PubMed  CAS  Google Scholar 

  27. Pyle WK, Popovich RP, Moncrief JW. Mass transfer evaluation in peritoneal dialysis. In: Moncrief JW, Popovich RP (eds), CAPD Update. New York, Masson Publishing USA, Inc 1981; p. 35.

    Google Scholar 

  28. Twardowski ZJ, Ksiazek A, Majadan M et al. Kinetics of continuous ambulatory peritoneal dialysis (CAPD) with four exchanges per day. Clin Nephrol 1981; 15: 119.

    PubMed  CAS  Google Scholar 

  29. Rubin J, Nolph KD, Popovich RP, Moncrief JW, Prowant B. Drainage volumes during continuous ambulatory peritoneal dialysis. ASAIO J 1979; 2: 54.

    Google Scholar 

  30. Krediet RT, Boeschoten EW, Zuyderhoudt RMJ, Arisz L. The relationship between peritoneal glucose absorption and body fluid loss by ultrafiltration during continuous ambulatory peritoneal dialysis. Clin Nephrol 1987; 27: 51.

    PubMed  CAS  Google Scholar 

  31. Twardowski ZJ, Khanna R, Nolph KD. Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron 1986; 42: 93.

    Article  PubMed  CAS  Google Scholar 

  32. Lindholm B, Werynski A, Bergstrom J. Kinetics of peritoneal dialysis with glycerol and glucose osmotic agents. ASAIO Trans 1987; 33: 19.

    PubMed  CAS  Google Scholar 

  33. Spencer PC, Farrell PC. Solute and water kinetics in CAPD. In: Gokal R (ed), Continuous Ambulatory Peritoneal Dialysis. Edinburgh, Churchill Livingstone 1986; p. 38.

    Google Scholar 

  34. Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L. Peritoneal transport characteristics of water, low-molecular weight solutes and proteins during long-term continuous ambulatory peritoneal dialysis. Perit Dial Bull 1986; 6: 61.

    Google Scholar 

  35. Nikolkakis N, Rodger RSC, Goodship THJ et al. The assessment of peritoneal function using a single hypertonic exchange. Perit Dial Bull 1985; 5: 186.

    Google Scholar 

  36. Smeby LC, Wideroe TE, Jorstad S. Individual dif ferences in water transport during continuous peritoneal dialysis. ASAIO J 1981; 4: 17.

    Google Scholar 

  37. Wideroe TE, Smeby LC, Mjaaland S, Dahl K, Berg KJ, Aas TW. Long-term changes in transperitoneal water transport during continuous ambulatory peritoneal; dialysis. Nephron 1984; 38: 238.

    Article  PubMed  CAS  Google Scholar 

  38. Raja RM, Khanna MS, Barber K. Solute transport and ultrafiltration during peritonitis in CAPD patients. ASAIO J 1984; 7: 8.

    Google Scholar 

  39. An International Co-operative Study. A survey of ultrafiltration in continuous ambulatory peritoneal dialysis. Perit Dial Bull 1984; 4: 137.

    Google Scholar 

  40. Olin T, Saldeen T. The lymphatic pathways from the peritoneal cavity: a lymphangiographic study in the rat. Cancer Res 1964; 24: 1700.

    PubMed  CAS  Google Scholar 

  41. Courtice FC, Simmonds WJ. Physiological significance of lymph drainage of the serous cavities and lungs. Physiol Rev 1954; 34: 419.

    PubMed  CAS  Google Scholar 

  42. Higgins GM, Graham AS. Lymphatic drainage from the peritoneal cavity in the dog. Arch Surg 1929; 19: 452.

    Article  Google Scholar 

  43. Raybuck HE, Allen L, Harms WS. Absorption of serum from the peritoneal cavity. Am J Physiol 1960; 199: 1021.

    PubMed  CAS  Google Scholar 

  44. Simer PH. The drainage of particulate matter from the peritoneal cavity by lymphatics. Anat Rec 1944; 88: 175.

    Article  Google Scholar 

  45. Courtice FC, Harding J, Steinbeck AW. The removal of free red blood cells from the peritoneal cavity of animals. Aust J Exp Biol Med Sci 1953; 31: 215.

    Article  PubMed  CAS  Google Scholar 

  46. Flessner MF, Perker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 1983; 244: H89.

    PubMed  CAS  Google Scholar 

  47. Von Recklinghausen F. Zur Fettresorption. Archiv fur Pathologische Anatomie und Physiologie und fur Klinische Medicin. 1863; 26: 172.

    Google Scholar 

  48. MacCallum WG. On the mechanism of absorption of granular material from the peritoneum. Bull John Hopkins Hosp 1903; 14: 105.

    Google Scholar 

  49. Cunningham RS. Studies in absorption from serous cavities IV. On the passage of blood cells and particles of different size through the walls of the lymphatics in the diaphragm. Am J Physiol 1922; 62: 248.

    Google Scholar 

  50. Hertzler AE. The morphogenesis of the stigmata and stomata occurring in peritoneal and vascular endothelium. Trans Am Micro Soc 1901; 22: 63.

    Article  Google Scholar 

  51. Allen L. The peritoneal stomata. Anat Rec 1937; 67: 89.

    Article  Google Scholar 

  52. French JE, Florey HW, Morris B. The absorption of particles by the lymphatics of the diaphragm. Q J Exp Physiol 1960; 45: 88.

    CAS  Google Scholar 

  53. Casley-Smith JR. Endothelial permeability -the passage of particles into and out of diaphragmatic lymphatics. Q J Exp Physiol 1964; 49: 365.

    CAS  Google Scholar 

  54. Tsilibary EC, Wissig SL. Light and electron microscope observations of the lymphatic drainage units of the peritoneal cavity of rodents. Am J Anat 1987; 180: 195.

    Article  PubMed  CAS  Google Scholar 

  55. Tsilibary EC, Wissig SL. Absorption from the peritoneal cavity: SEM study of mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 1977; 149: 127.

    Article  PubMed  CAS  Google Scholar 

  56. Hedenstedt S. Elliptocyte transfusions as a method in studies on blood destruction, blood volume and peritoneal resorption. Acta Chir Scandinav 1947; 95(Suppl 128): 105.

    Google Scholar 

  57. Morris B, Murphy MJ, Bessis M. The passage of red blood cells from the peritoneal cavity. In: Yoffey JM, Courtice FC (eds), Lymphatics, Lymph and Lymphoid Tissue. London, Academic Press 1970; p 303.

    Google Scholar 

  58. Florey HW. Reactions of, and absorption by, lymphatics with special reference to those of the diaphragm. Br J Exp Path 1927; 8: 479.

    Google Scholar 

  59. Allen L. On the penetrability of the lymphatics of the diaphragm. Anat Rec 1956; 124: 639.

    Article  PubMed  CAS  Google Scholar 

  60. Allen L, Weaterwood T. Role of fenestrated basement membrane in lymphatic absorption from the peritoneal cavity. Am J Physiol 1959; 187: 551.

    Google Scholar 

  61. Leak LV, Rahil K. Permeability to the diaphragmatic mesothelium: the ultrastructural basis for stomata. Am J Anat 1978; 151: 557.

    Article  PubMed  CAS  Google Scholar 

  62. Tsilibary EC, Wissig SL. Structural plasticity in the pathway for lymphatic drainage from the peritoneal cavity. Microvas Res 1979; 17: S144.

    Google Scholar 

  63. Bettendorf U. Lymph flow mechanism of the subperitoneal diaphragmatic lymphatics. Lymphology 1978; 11: 111.

    PubMed  CAS  Google Scholar 

  64. Tsilibary EC, Wissig SL. Lymphatic absorption from the peritoneal cavity: Regulation of patency of mesothelial stomata. Microvasc Res 1983; 25: 225.

    Article  Google Scholar 

  65. Allen L, Vogt E. A mechanism of lymphatic absorption from serous cavities. Am J Physiol 1937; 119: 776.

    CAS  Google Scholar 

  66. Khanna R, Mactier R, Twardowski ZJ, Nolph KD. Peritoneal cavity lymphatics. Perit Dial Bull 1986; 6: 113.

    Google Scholar 

  67. Flessner MF, Dedrick RL, Schultz JS. Exchange of macromolecules between peritoneal cavity and plasma. Am J Physiol 1985; 248: H15.

    PubMed  CAS  Google Scholar 

  68. Dunna DL, Barke RA, Knight NB, Humphrey EW, Simmons RL. Role of resident macrophages, peripheral neutrophils and translymphatic absorption in bacterial clearance from the peritoneal cavity. Infect Immun 1985; 49: 257.

    Google Scholar 

  69. Keane WF, Peterson PK. Host defence mechanisms of the peritoneal cavity and continuous ambulatory peritoneal dialysis. Perit Dial Bull 1984; 4: 122.

    Google Scholar 

  70. Simer PH. The passage of particulate matter from peritoneal cavity into the lymph vessels of the diaphragm. Anat Rec 1948; 101: 333.

    Article  PubMed  CAS  Google Scholar 

  71. Clark AJ. Absorption from the peritoneal cavity. J Pharmacol Exp Ther 1920; 16: 415.

    Google Scholar 

  72. Courtice FC, Steinbeck AW. The rate of absorption of heparinized plasma and of 0.9% NaCl from the peritoneal cavity of the rabbit and guinea-pig. Austral J Exp Biol Med Sc 1950; 28: 171.

    Article  CAS  Google Scholar 

  73. Allen L, Raybuck HE. The effects of obliteration of the diaphragmatic lymphatic plexus on serous fluid. Anat Rec 1960; 137: 25.

    Article  PubMed  CAS  Google Scholar 

  74. Courtice FC, Steinbeck AW. The effects of lym phatic obstruction and of posture on the absorption of protein from the peritoneal cavity. Austral J Exp Biol Med Sc 1951; 29: 451.

    Article  CAS  Google Scholar 

  75. Shear L, Castellot J, Barry KG. Peritoneal fluid absorption: effect of dehydration on kinetics. J Lab Clin Med 1965; 66: 232.

    PubMed  CAS  Google Scholar 

  76. Shear L, Swartz C, Shinaberger JA, Barry KG. Kinetics of peritoneal fluid absorption in adult man. New Engl J Med 1965; 272: 123.

    Article  PubMed  CAS  Google Scholar 

  77. Bolton C. Absorption from the peritoneal cavity. J Path Bact 1921; 24: 429.

    Article  CAS  Google Scholar 

  78. Zink J, Greenway CV. Control of ascites absorption in anesthetized cats: effects of intraperitoneal pressure, protein and furosemide diuresis. Gastroenterology 1977; 73: 1119.

    PubMed  CAS  Google Scholar 

  79. Morris B. The effect of diaphragmatic movement on the absorption of red cells and protein from the peritoneal cavity. Aust J Exp Biol Med Sci 1953; 31: 239.

    Article  PubMed  CAS  Google Scholar 

  80. Higgins GM, Beaver MG, Lemon WS. Phrenic neurectomy and peritoneal absorption. Am J Anat 1930; 45: 137.

    Article  Google Scholar 

  81. Schad H, Brechtelsbaver H. Thoracic duct lymph flow and composition in conscious dogs and the influence of anesthesia and passive limb movement. Plugers Arch 1977; 371: 25

    Article  CAS  Google Scholar 

  82. Elk JR, Adair T, Drake RE, Gabel JC. The effect of anesthesia and surgery on diaphragmatic lymph vessel flow after endotoxin in sheep. Lymphology 1990; 23: 145.

    PubMed  CAS  Google Scholar 

  83. Shear L, Ching S, Gabuzda GJ. Compartmentalisa-tion of ascites and oedema in patients with hepatic cirrhosis. New Engl J Med 1970; 282: 1391.

    Article  PubMed  CAS  Google Scholar 

  84. Hau T, Ahrenholz DH, Simmons RL. Secondary bacterial peritonitis: the biologic basis of treatment. Curr Probl Surg 1979; 16: 1.

    Article  PubMed  CAS  Google Scholar 

  85. Fowler GR. Diffuse septic peritonitis, with special reference to a new method of treatment, namely, the elevated head and trunk posture, to facilitate drainage into the pelvis. With a report of nine consecutive cases of recovery. Medical Red 1900; 57: 617.

    Google Scholar 

  86. Levine S. Post-inflammatory increase of absorption from peritoneal cavity into lymph nodes: particulate and oily inocula. Exp Mol Path 1985; 43: 124.

    Article  CAS  Google Scholar 

  87. Drake RE, Gabel JC. Abdominal lymph flow response to intra-peritoneal fluid in awake sheep. Lymphology 1991: 24: 77.

    PubMed  CAS  Google Scholar 

  88. Dobbie JW. From philosopher to fish: The comparative anatomy of the peritoneal cavity as an excretory organ and its significance for peritoneal dialysis in man. Perit Dial Int 1988; 8: 3.

    Google Scholar 

  89. Di Paolo N. The peritoneal mesothelium: An excretory organ. Perit Dial Int 1989; 9: 151.

    PubMed  Google Scholar 

  90. Dobbie JW, Pavlina T, Lloyd J et al. Phosphatidylcholine synthesis by peritoneal mesothelium: Its implications for peritoneal dialysis. Am J Kidney Dis 1988; 12: 31.

    PubMed  CAS  Google Scholar 

  91. Grahame GR, Torchia MC, Dankevich KA et al. Surface active material in peritoneal effluent of CAPD patients. Perit Dial Bull 1985; 5: 109–11.

    Google Scholar 

  92. Breborowicz A, Sombolos K, Rodela H et al.Mechanism of phosphalidylcholine action during peritoneal dialysis. Perit Dial Bull 1987; 7: 6.

    Google Scholar 

  93. Lill SR, Parsons RH, Bohac I. Permeability of the diaphragm and fluid resorption from the peritoneal cavity in the rat. Gastroenterology 1979; 76: 997.

    PubMed  CAS  Google Scholar 

  94. Aune S. Transperitoneal exchange IV. The effect of transperitoneal fluid transport on the transfer of solutes. Scand J Gastroenterol 1970; 5: 241.

    PubMed  CAS  Google Scholar 

  95. Courtice FC, Steinbeck AW. Absorption of protein from the peritoneal cavity. J Physiol 1951; 114: 336.

    PubMed  CAS  Google Scholar 

  96. Nicoll PA, Taylor AE. Lymph formation and flow. Ann Rev Physiol 1977; 39: 73.

    Article  CAS  Google Scholar 

  97. Henriksen JH, Lassen NA, Parving H, Winkler K. Filtration as the main transport mechanism of protein exchange between plasma and the peritoneal cavity in hepatic cirrhosis. Scand J Clin Invest 1980; 40: 503.

    Article  PubMed  CAS  Google Scholar 

  98. Goranson LR, Johsson K, Olin T. Parasternal scintigraphy with technetium -99m sulfide colloid in human subjects: a comparison between two techniques. Acta Radiol Diagnosis 1974; 15: 639.

    CAS  Google Scholar 

  99. Bergman F. Carcinoma of the ovary: a clinico-pathological study of 86 autopsied cases with special reference to mode of spread. Acta Obstet Gynecol Scand 1966; 45: 211.

    Article  PubMed  CAS  Google Scholar 

  100. Baglley CM, Young RC, Schein PS, Chabner BA, DeVita VT. Ovarian carcinoma metastatic to the diaphragm -frequently undiagnosed at laparotomy. Am J Obstet Gynecol 1973; 116: 397.

    Google Scholar 

  101. Raybuck HE, Weatherwood T, Allen L. Lymphatics in the rat. Am J Physiol 1960; 198: 1207.

    PubMed  CAS  Google Scholar 

  102. Dobbie JW, Zaki M, Wilson L. Ultrastructural studies on the peritoneum with special reference to chronic ambulatory peritoneal dialysis. Scot Med J 1981; 26: 213.

    PubMed  CAS  Google Scholar 

  103. Di Paolo N, Sacchi G, De Mia M et al. Morphology of the peritoneal membrane during peritoneal dialysis. Nephron 1986; 44: 204.

    Article  PubMed  Google Scholar 

  104. Verger C, Burnschvigg O, Le Carpentier Y, Laverone A. Structural and ultrastructural peritoneal membrane changes and permeability alterations during CAPD. Proc EDTA 1981; 18: 199.

    CAS  Google Scholar 

  105. Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis: Physiologic mechanisms and clinical implications. Ann Intern Med 1969; 70: 931.

    PubMed  CAS  Google Scholar 

  106. Knochel JP. Formation of peritoneal fluid hypertonicity during dialysis with isotonic glucose solutions. J Appl Physiol 1969; 27: 233.

    PubMed  CAS  Google Scholar 

  107. Rippe B, Stelin G, Ahlmen J. Lymph flow from the peritoneal cavity in CAPD patients. In: Maher JF, Winchester JF (eds), Frontiers in peritoneal dialysis. Field, Rich and Associates Inc., New York 1986; pp 24–30.

    Google Scholar 

  108. Mactier RA, Khanna R, Twardowski ZJ, Nolph KD. Role of peritoneal cavity lymphatic absorption in peritoneal dialysis. Kidney Int. 1987; 32: 165.

    Article  PubMed  CAS  Google Scholar 

  109. Nolph KD, Mactier RA, Khanna R, Twardowski ZJ, Moore H, McGary T. Kinetics of peritoneal ultrafiltration: The role of lymphatics. Kidney Int 1987; 32: 219.

    Article  PubMed  CAS  Google Scholar 

  110. Mactier RA, Khanna R, Twardowski ZJ, Nolph KD. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in CAPD. J Clin Invest 1987; 80: 1311.

    Article  PubMed  CAS  Google Scholar 

  111. Mactier RA, Khanna R, Twardowski ZJ, Nolph KD. Failure of ultrafiltration in CAPD due to excessive lymphatic absorption. Am J Kidney Dis 1987; 10: 461.

    PubMed  CAS  Google Scholar 

  112. Krediet RT, Struijk DG, Boeschoten EW et al. Autologous haemoglobin for the measurement of intraperitoneal volume and lymphatic absorption in CAPD. Perit Dial Int. VIII Annual CAPD Abstracts 1988; 83A.

    Google Scholar 

  113. Krediet RT, Boeschoten EW, Struijk DG, Arisz L. Differences in the peritoneal transport of water, solutes and proteins between dialysis with two or with three liter exchanges. Nephrol Dial Transplant 1988; 2: 198–204.

    Google Scholar 

  114. Krediet RT, Struijk DG, Boeschoten EW, Arisz L. The effect of peritonitis on lymphatic fluid absorption from the peritoneal cavity. Nephrol Dial Transplant 1988; 3: 556A.

    Google Scholar 

  115. Mactier RA, Khanna R, Moore H, Russ J, Nolph KD, Groshong T. Kinetics of peritoneal dialysis in children: Role of lymphatics. Kidney Int 1988; 34: 82.

    Article  PubMed  Google Scholar 

  116. Mactier RA. The role of lymphatic absorption in peritoneal dialysis. MD Thesis, University of Glasgow 1988.

    Google Scholar 

  117. Lindholm B, Werynski A, Bergstrom J. Peritoneal dialysis with amino acid solutions: fluid and solute transport kinetics. Artif Organs 1988; 12: 2.

    Article  PubMed  CAS  Google Scholar 

  118. De Paepe M, Matthys D, Lameire N. Measurement of peritoneal lymph flow in CAPD using different osmotic agents. Perit Dial Int, IX Annual CAPD abstracts 1989, 44A.

    Google Scholar 

  119. Mactier RA, Khanna R. Absorption of fluid and solutes from the peritoneal cavity. Theoretic and therapeutic implications and applications. Trans ASAIO 1989; 35: 122.

    Article  CAS  Google Scholar 

  120. Struijk DG, Van der Reijden HJ, Krediet RT, Koomen GCM, Arisz L. Effect of phosphatidylcholine on peritoneal transport and lymphatic absorption in a CAPD patient with sclerosing peritonities. Nephron 1989; 51: 577.

    Article  PubMed  CAS  Google Scholar 

  121. Breborowicz A, Rodela H, Oreopoulos DG. Effect of various factors on peritoneal lymphatic flow in rabbits. Perit Dial Int 1989; 9: 85.

    PubMed  CAS  Google Scholar 

  122. Lindholm B, Heimburger O, Waniewski J, Werynski A, Bergstrom J. Peritoneal ultrafiltration and fluid reabsorption during peritoneal dialysis. Nephrol Dial Transplant 1989; 4: 805.

    PubMed  CAS  Google Scholar 

  123. Struijk DG, Krediet RT, Koomen GCM, Boeschoten EW, Reijden JH. Arisz L. Indirect measurement of lymphatic absorption with inulin in CAPD patients. Perit Dial Int 1990; 10: 141.

    PubMed  CAS  Google Scholar 

  124. Chan PCK, Tam SCF, Cheng IKP. Oral neostigmine and lymphatic absorption in a myasthenia gravis patient on CAPD. Perit Dial Int 1990; 10: 93.

    PubMed  CAS  Google Scholar 

  125. Krediet RT, Struijk DG, Koomen GCM, Arisz L. Peritoneal fluid kinetics during CAPD measured with intraperitoneal dextran 70. ASAIO Transactions 1991; 37: 662.

    PubMed  CAS  Google Scholar 

  126. Lysaght MJ, Moran J, Lysaght CG. Plasma water filtration and lymphatic uptake during peritoneal dialysis. ASAIO Trans 1991; 37: M402.

    PubMed  CAS  Google Scholar 

  127. Schroder CH, Reddingius RE, Van Dreumel JAM, Theeuwes AGM, Monnens LAH. Transcapillary ultrafiltration and lymphatic absorption during childhood continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1991; 6: 571.

    Article  PubMed  CAS  Google Scholar 

  128. Chan PCK, Wu PG, Tam SCF, Ip MSM, Fang GX, Cheng IKP. Factors affecting lymphatic absorption in Chinese patients on CAPD. Perit Dial Int 1992; 11: 147.

    Google Scholar 

  129. Heimburger O, Waniewski J, Werynski A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int 1992; 41: 1320.

    Article  PubMed  CAS  Google Scholar 

  130. Hasbargen JA, Hasbargen BJ. Fortenbery EJ. Effect of intraperitoneal neostigmine on peritoneal transport characteristics in CAPD. Kidney Int 1992; 42: 1398.

    Article  PubMed  CAS  Google Scholar 

  131. Abensur H, Romad JE, Prado EBA, Kakehashi ET, Sabbaga E, Marcondes M. Use of dextran 70 to estimate peritoneal lymphatic absorption rate in CAPD. Adv Perit Dial 1992; 8: 3.

    PubMed  CAS  Google Scholar 

  132. Struijk DG, Koomen GCM, Krediet RT, Arisz L. Indirect measurement of lymphatic absorption in CAPD patients is not influenced by trapping. Kidney Int 1992; 41: 1668.

    Article  PubMed  CAS  Google Scholar 

  133. Dykes PW, Jones JH. Albumin exchange between plasma and ascitic fluid. Clin Sci 1968; 34: 185.

    PubMed  CAS  Google Scholar 

  134. Daugirdas JR, Ing TS, Gandhi VC, Hano JE, Chen WT, Yuan L. Kinetics of peritoneal fluid absorption (from the peritoneal cavity) in patients with chronic renal failure. J Lab Clin Med 1980; 95: 351.

    PubMed  CAS  Google Scholar 

  135. Arfors KE, Rutili G, Svensjo E. Microvascular transport of macromolecules in normal and inflammatory condition. Acta Physiol Scand 1979; 463: S90.

    Google Scholar 

  136. Taylor AE, Gibson WH, Granger HJ, Guyton AC. The interaction between intercapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology 1973; 6: 192.

    PubMed  CAS  Google Scholar 

  137. Rutili G, Arfors KE. Interstitial fluid and lymph protein concentration in the subcutaneous tissue. Bibl Anat 1975; 13: 70.

    PubMed  CAS  Google Scholar 

  138. Noer I, Lassen NA. Evidence of active transport (filtration?) of plasma proteins across the capillary walls in muscle and subcuties. Lymphology 1978; 11: 133.

    PubMed  CAS  Google Scholar 

  139. Cheek TR, Twardowski ZJ, Moore HL, Nolph KD. Absorption of inulin and high molecular weight gelatin isocyanate solution from peritoneal cavity of rats. In: Avram MM, Girodano C (eds), Ambulatory Peritoneal Dialysis (Proceedings of the Fourth International Congress of Peritoneal Dialysis) New York, Plenum Publishing Corporation, New York 1990; p 149.

    Google Scholar 

  140. Krediet RT, Struijk DG, Koomen GCM, Hoek FJ, Arisz L. The disappearance of macromolecules from the peritoneal cavity during CAPD is not dependent on molecular size. Perit Dial Int 1990; 10: 147.

    PubMed  CAS  Google Scholar 

  141. Flessner MF, Fentschermacher JD, Blasberg RG, Dedrick RL. Peritoneal absorption of macromolecules studied by quantitative autoradiography. Am J Physiol 1985; 248: H26.

    PubMed  CAS  Google Scholar 

  142. Waniewski J, Heimburger O, Park MS, Werynski A, Lindholm B. Impact of tracer disappearance on transcapillary ultrafiltration and net dialysate volume change. Perit Dial Int 1992; 12 (Suppl 2): S14.

    Google Scholar 

  143. Twardowski ZJ, Khanna R, Nolph KD et al. Intraabdominal pressures during natural activities in patients treated with continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 129.

    Article  PubMed  CAS  Google Scholar 

  144. Stelin G, Rippe B. A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int 1990; 38: 465.

    Article  PubMed  CAS  Google Scholar 

  145. Rippe B, Stelin G, Haraldsson B. Computer simmulations of peritoneal fluid transport in CAPD. Kidney Int 1991; 40: 315.

    Article  PubMed  CAS  Google Scholar 

  146. Abernethy NJ, Chin W, Hay JB, Rodela H, Oreopoulos D, Johnston MG. Lymphatic drainage of the peritoneal cavity in sheep. Am J Physiol (Renal, Fluid Electrolyte Physiol 29) 1991; 260: 353.

    Google Scholar 

  147. Abernethy NJ, Chin W, Hay JB, Rodela H, Oreopoulos D, Johnston MG. Lymphatic removal of dialysate from the peritoneal cavity of anesthetized sheep. Kidney Int 1991; 4D: 174.

    Article  Google Scholar 

  148. Tran LP, Rodela H, Abernethy NJ, Yuan ZY, Hay JB, Oreopoulos D, Johnston MF. Lymphatic drainage of hypertonic dialysis solution from the peritoneal cavity of anesthetized and conscious sheep. Am J Physiol 1993; 74: 859.

    CAS  Google Scholar 

  149. Tran L, Rodel H, Hay JB, Oreopoulos D, Johnston MG. Quantitation of lymphatic drainage of the peritoneal cavity in sheep. Comparison of direct cannulation techniques with indirect methods to estimate lymph flow. Perit Dial Int 1993; 13: 270.

    PubMed  CAS  Google Scholar 

  150. Yuan ZY, Rodela H, Hay JB, Oreopoulos D, Johnston MG. Comparison of the use of 51Cr-RBCs and l25I-albumin as markers to estimate lymph drainage of the peritoneal cavity in conscious sheep. Am J Physiol (in press).

    Google Scholar 

  151. Laine GA, Allen SJ, Katz J, Gabel JC, Drake RE. Outflow pressure reduces lymph flow rate from various tissues. Microvasc Res 1987; 33: 135.

    Article  PubMed  CAS  Google Scholar 

  152. Shockley TR, Ofsthun NJ. Pathways for fluid loss from the peritoneal cavity. Perit Dial Int 1992; (S2): S6.

    Google Scholar 

  153. Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 1991; 2: 122.

    PubMed  CAS  Google Scholar 

  154. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. The effect of increased intraperitoneal pressure on fluid and protein transport during CAPD. Perit Dial Int 1993; 13 (Suppl 1): S62.

    Google Scholar 

  155. Abensur H, Romao Jr. JE, Prado EBA, Kakehashi E, Sabbaga E, Marcondes M. Influence of hydrostatic intraperitoneal pressure and cardiac function on the lymphatic absorption rate of the peritoneal cavity in CAPD. Perit Dial Intern 1993; 13 (Suppl 1): 59.

    Google Scholar 

  156. Heimburger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990, 38: 495.

    Article  PubMed  CAS  Google Scholar 

  157. Kumano K, Suyama K, Sakai T. Increased lymphatic absorption as a cause of ultrafiltration failure in long-term CAPD patients. Perit Dial Int 1992; 12(S2): S14.

    Google Scholar 

  158. Kim D, Maduluko GC, Thome F, Cattran DC, Fenton SSA. The various spectrum of ultrafiltration failure and its pathogenesis among CAPD patients. Kidney Int 1985; 27: 181A.

    Google Scholar 

  159. Davies SJ, Brown B, Bryan J, Russell GI. Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant; 1993; 8: 64.

    PubMed  CAS  Google Scholar 

  160. Pollock CA, Ibels LS, Hallett MD, Cocksedge B, Caterson RJ, Mahoney JF, Farrell PC. Loss of ultrafiltration in continuous ambulatory peritoneal dialysis. Perit Dial Int 1989; 9: 107.

    PubMed  CAS  Google Scholar 

  161. Hallett M, Lysaght M, Farrell P. The role of lymphatic drainage in peritoneal mass transfer. Artif Organs 1989; 13: 28–34.

    Article  PubMed  CAS  Google Scholar 

  162. Randerson DH, Farrell PC. Mass transfer properties of the human peritoneum. ASAIO J 1980; 3: 140.

    Google Scholar 

  163. Popovich RP, Moncrief JW. Transport kinetics. In: Nolph KD (ed), Peritoneal Dialysis (2nd edition). Boston, Martinus Nijhoff 1985; p 115.

    Google Scholar 

  164. Garred LJ, Canaud B, Farrell PC. A simple kinetic model for assessing peritoneal mass transfer in chronic ambulatory peritoneal dialysis. ASAIO J 1983; 6: 131.

    Google Scholar 

  165. Selgas R, Rodriguez-Carmona A, Martinez ME et al. Peritoneal mass transfer in patients on long-term CAPD. Perit Dial Bull 1984; 4: 153.

    Google Scholar 

  166. Mactier RA, Khanna R, Nolph KD, Twardowski Z, Moore H. Neostigmine increases ultrafiltration and solute clearances in peritoneal dialysis by reducing lymphatic drainage. Perit Dial Bull 1987; 7: S50.

    Google Scholar 

  167. Mactier RA, Khanna R, Moore H, Twardowski ZJ, Nolph K. Phosphatidylcholine enhances the efficiency of peritoneal dialysis by reducing lymphatic reabsorption. Kidney Int 1988; 33: 247A.

    Google Scholar 

  168. Di Paolo N, Buoncristiani U, Capotondo L, Gaggiotti E, De Mia M, Rossi P, Sansoni E, Bernini M. Phosphatidylcholine and peritoneal transport during peritoneal dialysis. Nephron 1986; 44: 365.

    Article  PubMed  Google Scholar 

  169. Dombros N, Balaskas E, Savidis N, Tourkantonis A, Sombolos K. Phosphatidylcholine increases ultrafiltration in CAPD patients. Perit Dial Bull 1987; 7: S24.

    Google Scholar 

  170. Struijk D, Van Der Reijden H, Krediet R, Koomen G, Arisz L. Effect of phosphatidylcholine on peritoneal transport on lymphatic absorption in a patient with sclerosing peritonitis. Nephron 1989; 51: 577.

    Article  PubMed  CAS  Google Scholar 

  171. Di Paolo B, Chakrabarti E, Maher JF.

    Google Scholar 

  172. De Vecchi A, Castelnovo C, Guerra L, Scalamogna A. Phosphatidylcholine administration in CAPD patients with reduced ultrafiltration. Perit Dial Int 1989; 9: 207.

    PubMed  Google Scholar 

  173. Chan H, Abraham G, Oreopoulos DG. Oral lecithin improves ultrafiltration in patients on peritoneal dialysis. Perit Dial Int 1989; 9: 203.

    PubMed  CAS  Google Scholar 

  174. Querques M, Procaccini DA, Pappani A, Strippoli P, Passion EA. Influence of phosphatidylcholine on ultrafiltration and solute transfer in CAPD patients. ASAIO Transactions 1990; 36: M581.

    PubMed  CAS  Google Scholar 

  175. Chan PC. Effect of phosphatidylcholine on ultrafiltration in patients on CAPD. Nephron 1993; 59: 100.

    Article  Google Scholar 

  176. Krack G, Viglino G, Cavalli PL, Gandolfo C, Magliano G, Cantaluppi A, Peluso F. Intraperitoneal administration of phosphatidylcholine improves ultrafiltration in CAPD patients. Perit Dial Int 1992; 12: 359.

    PubMed  CAS  Google Scholar 

  177. Steinberg B. Infections of the peritoneum. New York, Paul Hoeber, Inc 1984.

    Google Scholar 

  178. Durham HE. The mechanism of reaction to peritoneal infection J Path Bact 1897; 4: 338.

    Article  Google Scholar 

  179. Vas SI. Peritonitis. In: Nolph KD (ed), Peritoneal Dialysis (2nd edition). Boston, Marinus Nijhoff Publishers 1985; p. 403.

    Google Scholar 

  180. Wu G. Osmotic agents for peritoneal dialysis solutions. Perit Dial Bull 1982; 2: 151.

    Google Scholar 

  181. Higgins JT, Gross ML, Somani P. Patient tolerance and dialysis effectiveness of a glucose polymer containing peritoneal dialysis solution. Perit Dial Bull 1984; 4: S131.

    Google Scholar 

  182. Mistry CD, Mallick NP, Gokal R. Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges. Lancet 1987; ii: 178.

    Article  Google Scholar 

  183. Twardowski ZJ, Nolph KD, Khanna R, Hain H, Moore H, McGary TJ. Charged polymers as osmotic agents for peritoneal dialysis. Materials Research Society Symposium Proceedings 1986; 55: 319.

    CAS  Google Scholar 

  184. Winchester JF, Stegink LD, Ahmad S et al. A comparison of glucose polymer and dextrose as osmotic agents in CAPD. In: Maher JF, Winchester JF (eds), Frontiers in Peritoneal Dialysis. New York, Field, Rich and Associates, Inc 1986; p. 231.

    Google Scholar 

  185. Junor BJR, Briggs JD, Forwell MA, Dobbie JW, Henderson IS. Sclerosing peritonitis: role of chlorhexidine in alcohol. Perit Dial Bull 1985; 5: 101.

    Google Scholar 

  186. Mactier RA. Measurement of dialysate volumes in peritoneal dialysis. Perit Dial Int 1989; 9: 155.

    PubMed  CAS  Google Scholar 

  187. Pust AH, Leypoldt JK, Frigon RP, Henderson LW. Peritoneal dialysate volume determined by indicator dilution measurements. Kidney Int 1988; 33: 64.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mactier, R.A., Khanna, R. (1994). Peritoneal lymphatics. In: Gokal, R., Nolph, K.D. (eds) The Textbook of Peritoneal Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0814-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0814-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4349-6

  • Online ISBN: 978-94-011-0814-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics