Skip to main content

Characterization of poorly ordered minerals by selective chemical methods

  • Chapter
Clay Mineralogy: Spectroscopic and Chemical Determinative Methods

Abstract

At the beginning of this century, ideas on the composition of clay-size material were greatly influenced by van Bemmelen (1910) who suggested that this material existed as a completely amorphous colloidal complex. However, many mineralogists thought that clays could be a mixture, containing varying proportions of crystalline material (Mackenzie, 1963). The mixed-oxide hypothesis of van Bemmelen (1910), associating the colloidal state with non-crystallinity persisted until Hendricks and Fry (1930), using X-ray methods showed the presence of large amounts of crystalline material in soil clays. This resulted in the virtual rejection of ideas advocating an amorphous nature for clays. Also, researches were directed almost exclusively towards elucidation of the physico-chemical reactions within the crystal structure of clay minerals. Despite this emphasis on crystallinity, Mattson, in a series of papers on the colloidal chemistry of soil, continued to recognize the importance of inorganic, poorly ordered components in soils — a balanced view which has now become generally accepted (Rich and Thomas, 1960; Mitchell, Farmer and McHardy, 1964). Soil clay can, therefore, best be regarded as consisting of both crystalline and non-crystalline minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexsandrova, L. N. (1960) The use of pyrophosphate for isolating free humic substances and their organic-mineral compounds from the soil. Soviet Soil Science, 1960, 190–197.

    Google Scholar 

  • Aomine, S. and Jackson, M. L. (1959) Allophane determinations in Ando soils by cation exchange delta value. Soil Science Society of America, Proceedings, 23, 210–214.

    Article  Google Scholar 

  • Bascomb, C. L. (1968) Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. Journal of Soil Science, 19, 251–268.

    Article  Google Scholar 

  • Biermans, V. and Baert, L. (1977) Selective extraction of the amorphous Al, Fe and Si oxides using an alkaline tiron solution. Clay Minerals, 12, 127–135.

    Article  Google Scholar 

  • Borggard, O. K. (1976) Selective extraction of amorphous iron oxide by EDTA from a mixture of amorphous iron oxide, goethite and hematite. Journal of Soil Science, 27, 478–486.

    Article  Google Scholar 

  • Bruckert, S. (1979) Classification des sols bruns ocreux et cryptopodzoliques par analyse des extraits tetraborates tamponnés à pH 9.5. Geoderma, 22, 205–212.

    Article  Google Scholar 

  • Bruckert, S. and Souchier, B. (1975) Mise au point d’un test de differentiation chimique des horizons cambiques et spodiques. Compte Rendus Hebdomadaires des Seances de l’Academie des Sciences, 280, 1361–1364.

    Google Scholar 

  • Campbell, A. S. and Schwertmann, U. (1985) Evaluation of selective dissolution extractants in soil chemistry and mineralogy by differential X-ray diffraction. Clay Minerals, 20, 515–519.

    Article  Google Scholar 

  • Childs, C. W., Matsue, N. and Yoshinaga, N. (1991) Ferrihydrite in volcanic ash soils of Japan. Soil Science and Plant Nutrition, 37, 299–311.

    Article  Google Scholar 

  • Childs, C. W., Parfitt, R. L. and Lee, R. (1983) Movement of aluminium as an inorganic complex in some podzolised soils, New Zealand. Geoderma, 29, 139–155.

    Article  Google Scholar 

  • Cradwick, P. D. G., Farmer, V. C, Russell, J. D. et al. (1972) Imogolite, a hydrated aluminium silicate of tubular structure. Nature, 240, 187–189.

    Article  Google Scholar 

  • Deb, B. C. (1950) The estimation of free iron oxides in soils and clays and their removal. Journal of Soil Science, 1, 212–220.

    Article  Google Scholar 

  • De Endredy, A. S. (1963) Estimation of free iron oxides in soils and clays by a photolytic method. Clay Minerals Bulletin, 5, 209–217.

    Article  Google Scholar 

  • Farmer, V. C. and Russell, J. D. (1990) The structure and genesis of allophanes and imogolite; their distribution in non-volcanic soils, in Soil Colloids and their Associations in Soil Aggregates (eds M. F. de Boodt, M. H. B. Hayes and A. Herbillon). Proceedings, NATO Advanced Studies Workshop, Ghent, 1985, Springer-Verlag, New York, pp. 165–178.

    Google Scholar 

  • Farmer, V. C., Russell, J. D. and Berrow, M. L. (1980) Imogolite and protoimogolite allophanes in spodic horizons: evidence of a mobile aluminium silicate complex. Journal of Soil Science, 31, 673–684.

    Article  Google Scholar 

  • Farmer, V. C., Russell, J. D. and Smith, B. F. L. (1983) Extraction of inorganic forms of translocated Al2O3, Fe2O3 and SiO2 from a podzol Bs horizon. Journal of Soil Science, 34, 571–576.

    Article  Google Scholar 

  • Farmer, V. C., Smith, B. F. L. and Tait, J. M. (1977) Alteration of allophane and imogolite by alkaline digestion. Clay Minerals, 12, 195–198.

    Article  Google Scholar 

  • Farmer, V. C., McHardy, W. J., Palmieri, F., Violante, A. and Violante, P. (1991) Synthetic allophanes formed in calcareous environments: nature conditions of formation and transformations. Soil Science Society of America, Journal, 55, 1162–1166.

    Article  Google Scholar 

  • Fieldes, M. (1955) Clay mineralogy of New Zealand soils. Part II. Allophane and related mineral colloids. New Zealand Journal of Science and Technology, B37, 336–350.

    Google Scholar 

  • Fieldes, M. and Perrott, K. W. (1966) Nature of allophane in soils. III. Rapid field and laboratory test for allophane. New Zealand Journal of Science, 9, 623–629.

    Google Scholar 

  • Follett, E. A. C., McHardy, W. J., Mitchell, B. D. and Smith, B. F. L. (1965) Chemical dissolution techniques in the study of soil clays. Clay Minerals Bulletin, 6, 23–34.

    Article  Google Scholar 

  • Gotz, J. and Masson, C. R. (1970) Trimethylsilyl derivatives for the study of silicate structures. Part I: a direct method of trimethylsilylation. Journal of the Chemical Society (A), 2683–2686.

    Google Scholar 

  • Gotz, J. and Masson, C. R. (1971) Trimethylsilylation of silicate anions: a method of studying the structure of crystalline silicates and glasses, in Science and Technical Committee, 9th International Conference on Glass, Versailles, 27 September–2 October, pp. 261–275.

    Google Scholar 

  • Guillet, B. and Souchier, B. (1982) Amorphous and crystalline oxyhydroxides and oxides in soils (iron, aluminium manganese, silicon), in Constituents and Properties of Soils (eds M. Bonneau and B. Souchier). Academic Press, London.

    Google Scholar 

  • Hashimoto, I. and Jackson, M. L. (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration in Proceedings, 7th Conference on Clays and Clay Minerals (ed. A. Swineford). Pergamon Press, Oxford, pp. 102–113.

    Google Scholar 

  • Hendricks, S. B. and Fry, W. H. (1930) The results of X-ray and microscopical examinations of soil colloids. Soil Science, 29, 457–479.

    Article  Google Scholar 

  • Hoyos, A. and Pino, C. (1958) A comparative study of soils from the Canary Islands and from Spanish Guinea. Agrochimica, 2, 218–235.

    Google Scholar 

  • Jackson, M. L., Pennington, R. P. and Mackie, W. Z. (1950) Crystal chemistry of soils. I. The fundamental structure groups and families of silicate minerals. Soil Science Society of America, Proceedings, 13, 139–145.

    Article  Google Scholar 

  • Jones, R. C. and Uehura, G. (1973) Amorphous coatings on mineral surfaces. Soil Science Society of America, Proceedings, 37, 792–798.

    Article  Google Scholar 

  • Jorgensen, S. S., Birnie, A. C., Smith, B. F. L. and Mitchell, B. D. (1970) Assessment of gibbsitic material in soil clays by differential thermal analysis and alkali dissolution methods. Journal of Thermal Analysis, 2, 277–286.

    Article  Google Scholar 

  • Kirkman, J. H., Mitchell, B. D. and Mackenzie, R. C. (1966) Distribution in some Scottish soils of an inorganic gel system related to ‘allophane’. Transactions, Royal Society of Edinburgh, 66, 393–418.

    Google Scholar 

  • Kodama, H. and Ross, G. J. (1991) Tiron dissolution method used to remove and characterize inorganic components in soils. Soil Science Society of America, Journal, 55, 1180–1187.

    Article  Google Scholar 

  • Lachowski, E. E. and Glasser, F. P. (1973) Application of gas chromatography to mineral chemistry: aluminium-silicon ordering in melilites. Mineralogical Magazine, 39, 412–419.

    Article  Google Scholar 

  • Lentz, C. W. (1964) Silicate minerals as sources of trimethylsilyl silicates and silicate structure analysis of sodium silicate solutions. Inorganic Chemistry, 3, 574–579.

    Article  Google Scholar 

  • Loveland, P. J. and Bullock, P. (1975) Crystalline and amorphous components of the clay fractions in brown podzolic soils. Clay Minerals, 10, 451–469.

    Google Scholar 

  • Mackenzie, R. C. (1957) Modern methods for studying clays. Agrochimica, 1, 305–327.

    Google Scholar 

  • Mackenzie, R. C. (1963) De Natura Lutorum, in Proceedings, 11th National Conference on Clays and Clay Minerals, 1962 (ed. W. F. Bradley). Pergamon Press, Oxford, pp. 11–28.

    Google Scholar 

  • McKeague, J. A. (1967) An evaluation of 0.1 m pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Canadian Journal of Soil Science, 47, 95–99.

    Article  Google Scholar 

  • McKeague, J. A. and Day, J. H. (1966) Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46, 13–22.

    Article  Google Scholar 

  • McKeague, J. A., Brydon, J. E. and Miles, N. M. (1971) Differentiation of forms of extractable iron and aluminium in soils. Soil Science Society of America, Proceedings, 34, 33–38.

    Article  Google Scholar 

  • Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered by sodium bicarbonate, in Proceedings, 7th National Conference on Clays and Clay Minerals (ed. A. Swineford), National Academy of Science, Natural Research Council Publication, pp. 317–327.

    Google Scholar 

  • Mitchell, B. D. and Farmer, V. C. (1962) Amorphous clay minerals in some Scottish soil profiles. Clay Minerals Bulletin, 5, 128–144.

    Article  Google Scholar 

  • Mitchell, B. D. and Mackenzie, R. C. (1954) Removal of free iron oxide from clays. Soil Science, 77, 173–184.

    Article  Google Scholar 

  • Mitchell, B. D. and Smith, B. F. L. (1974) The removal of organic matter from soil extracts by bromine oxidation. Journal of Soil Science, 25, 239–241.

    Article  Google Scholar 

  • Mitchell, B. D., Farmer, V. C. and McHardy, W. J. (1964) Amorphous inorganic material in soils. Advances in Agronomy, 16, 327–383.

    Article  Google Scholar 

  • Mitchell, B. D., Smith, B. F. L. and de Endredy, A. S. (1971) The effect of buffered sodium dithionite solution and ultrasonic agitation on soil clays. Israel Journal of Chemistry, 9, 45–52.

    Google Scholar 

  • Parfitt, R. L. (1989) Optimum conditions for extraction of Al, Fe and Si from soils with acid oxalate. Communications in Soil Science and Plant Analysis, 20, 801–816.

    Article  Google Scholar 

  • Parfitt, R. L. (1990) Allophane in New Zealand — a review. Australian Journal of Soil Research, 28, 343–360.

    Article  Google Scholar 

  • Parfitt, R. L. and Childs C. W. (1988) Estimation of forms of Fe and Al: a review and analysis of contrasting soils by dissolution and Mössbauer methods. Australian Journal of Soil Research, 26, 121–144.

    Article  Google Scholar 

  • Parfitt, R. L. and Henmi, T. (1982) Comparison of an oxalate-extraction method and an infrared spectroscopic method for determining allophane in soil clays. Soil Science and Plant Nutrition, 28, 183–190.

    Article  Google Scholar 

  • Perrott, K. W., Smith, B. F. L. and Inkson, R. E. (1976) The reaction of fluoride with soils and soil minerals. Journal of Soil Science, 27, 58–67.

    Article  Google Scholar 

  • Perrott, K. W., Smith, B. F. L. and Mitchell, B. D. (1976) Effect of pH on the reaction of sodium fluoride with hydrous oxides of silicon, aluminium and iron and with poorly ordered aluminosilicates. Journal of Soil Science, 27, 348–356.

    Article  Google Scholar 

  • Pritchard, D. T. (1967) Spectrophotometric determination of aluminium in soil extracts with xylenol orange. Analyst, 92, 103–106.

    Article  Google Scholar 

  • Rich, C. I. and Thomas, G.W. (1960) The clay fraction of soils. Advances in Agronomy, 12, 1–39.

    Article  Google Scholar 

  • Robertson, G. (1950) The colorimetric determination of aluminium in silicate materials. Journal of the Science of Food and Agriculture, 1, 59–63.

    Article  Google Scholar 

  • Ross, C. S. and Kerr, P. F., (1934) Halloysite and allophane. US Geological Survey Professional Paper, 185-G, 135–148.

    Google Scholar 

  • Saunders, W. M. H. (1968) Soils of New Zealand. Part 2, New Zealand Soil Bureau Bulletin, 26, 109–114.

    Google Scholar 

  • Schuppli, P. A., Ross, G. J. and McKeague, J. A. (1983) The effective removal of suspended material from pyrophosphate extractions of soils from tropical and temperate regions. Soil Science Society of America, Journal, 47, 1026–1032.

    Article  Google Scholar 

  • Schwertmann, U. (1964) The differentiation of iron oxide in soils by a photochemical extraction with acid ammonium oxalate. Zeitschrift fuer Pflanzenemachrung, Duengung, Bodenkunde, 105, 194–201.

    Article  Google Scholar 

  • Schwertmann, U. (1973) Use of oxalate for Fe extraction from soils. Canadian Journal of Soil Science, 53, 244–246.

    Article  Google Scholar 

  • Schwertmann, U. (1978) Non-crystalline and accessory minerals, in Proceedings, International Clay Conference, 1978, Oxford (eds M. M. Mortland and V. C. Farmer), Developments in Sedimentology, 27. Elsevier, Amsterdam.

    Google Scholar 

  • Smith, B. F. L. (1984) The determination of silicon in ammonium oxalate extracts of soils. Communications in Soil Science and Plant Analysis, 15, 199–204.

    Article  Google Scholar 

  • Smith, B. F. L., Mitchell, B. D. and Mackenzie, R. C. (1983) Susceptibility to weathering of some Scottish rocks and their derived soils. Transactions of the Royal Society of Edinburgh: Earth Sciences, 73, 191–203.

    Article  Google Scholar 

  • Smith, B. F. L., Paterson, E. and Mitchell, B. D. (1982) Trimethylsilylation of commonly occurring primary and secondary minerals in soil. Journal of Soil Science, 33, 115–124.

    Article  Google Scholar 

  • Tait, J. M., Yoshinaga, N. and Mitchell, B.D. (1978) The occurrence of imogolite in some Scottish soils. Soil Science and Plant Nutrition, 24, 145–151.

    Article  Google Scholar 

  • Tamm, O. (1922) Eine methode zur Bestimmung der anorganischen Komponenten des Gelkomplexes. Meddelelser Skogsforsoksanst Stockholm, 19, 385–404.

    Google Scholar 

  • Thomsen, J., Johnson, K. and Petty, R. (1983) Determination of reactive silicate in seawater by flow injection analysis. Analytical Chemistry, 55, 2378–2382.

    Article  Google Scholar 

  • Van Bemmelen, J. M. (1910) The different modes of weathering of silicates in the Earth’s crust. Zeitschrift fuer Anorganische und Allgemeine Chemie, 66, 322–357.

    Google Scholar 

  • Wang, C. and Schuppli, P. A. (1986) Determining ammonium oxalate-extractable Si in soils. Canadian Journal of Soil Science, 66, 751–755.

    Article  Google Scholar 

  • Weaver, R. M., Syers, J. K. and Jackson, M. L. (1968) Determination of silica in citrate-bicarbonate extracts of soils. Soil Science Society of America, Proceedings, 32, 497–501.

    Article  Google Scholar 

  • Webber, A. and Wilson, A. L. (1969) The absorptiometric determination of silicon in water. Part VII. Improved method for determining the total silicon content of high purity water. Analyst, 94, 110–120.

    Article  Google Scholar 

  • Yoshinaga, N. (1966) Chemical composition and some thermal data of eighteen allophanes from Ando soils and weathered pumices. Soil Science and Plant Nutrition, 12, 47–54.

    Article  Google Scholar 

  • Yoshinaga, N. and Aomine, S. (1962) Imogolite in some Ando soils. Soil Science and Plant Nutrition, 8, 22–29.

    Article  Google Scholar 

  • Yoshinaga, N., Tait, J. M. and Soong, R. (1973) Occurrence of imogolite in some volcanic ash soils of New Zealand. Clay Minerals, 10, 127–130.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, B.F.L. (1994). Characterization of poorly ordered minerals by selective chemical methods. In: Wilson, M.J. (eds) Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0727-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0727-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4313-7

  • Online ISBN: 978-94-011-0727-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics