Skip to main content

Abstract

Of the determinative methods used to study clay minerals, chemical analysis is the oldest and most established. Before the development of the earliest instrumental techniques, such as X-ray diffraction and thermal methods, the identification of clay-mineral phases was accomplished by chemical analysis, supplemented where possible by optical data and physical characteristics such as specific gravity, colour, hardness, etc. However, fine-grained materials cannot be characterized reliably using these methods alone, and misidentifications were common. With the routine application of infrared spectroscopy and electron microscopy, in addition to X-ray diffraction and thermal analysis, instrumental techniques are now unquestionably superior to chemical analysis for clay-mineral identification and a clay is often described and identified without recourse to chemical analysis. Nevertheless, for complete characterization, a chemical analysis is still essential, as this is the only way that a structural formula can be calculated and the distribution of cations in the structure defined directly. A full characterization should include the determination of all the major and minor elements (with the proportion of the iron present in the ferrous and ferric forms) and also the determination of the cation-exchange capacity and, if possible, the anion-exchange capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, J. and Khan, A. A. (1970) Critical evaluation of powder sampling procedures. Chemical Engineer, May, CE108–CE112.

    Google Scholar 

  • Bache, B. W. (1970) Barium isotope method for measuring cation-exchange capacity of soils and clays. Journal of the Science of Food and Agriculture, 22, 169–171.

    Article  Google Scholar 

  • Bain, D. C. (1976) A titanium-rich clay. Journal of Soil Science, 27, 68–70.

    Article  Google Scholar 

  • Bain, D. C. (1977) The weathering of ferruginous chlorite in a podzol from Argyllshire, Scotland. Geoderma, 17, 193–208.

    Article  Google Scholar 

  • Bain, D. C. and Russell, J. D. (1981) Swelling minerals in a basalt and its weathering product from Morvern, Scotland: II. Swelling chlorite. Clay Minerals, 16, 203–212.

    Article  Google Scholar 

  • Baker, D. E. and Suhr, N. H. (1982) Atomic absorption and flame emission spectrometry. Agronomy, 9, 13–27.

    Google Scholar 

  • Beaufort, D. (1987) Interstratified chlorite/smectite (‘metamorphic vermiculite’) in the Upper Precambrian greywackes of Rouez, Sarthe, France, in Proceedings, International Clay Conference, Denver (eds L. G. Schultz, H. van Olphen and F. A. Mumpton). The Clay Minerals Society, Bloomington, IN, pp. 59–65.

    Google Scholar 

  • Beaufort, D., Meunier, A., Thomassin, J. H. and Fouillac, A. M. (1991) Corrensite, chlorite /smectite mixed layered minerals and saponite in the metamorphic basement of the Basin of Paris (France), in Proceedings 7th Euroclay Conference, Dresden (eds M. Störr, K.-H. Henning and P. Adolphi). Ernst-Moritz-Arndt Universität, Greifswald, pp. 65–69.

    Google Scholar 

  • Begheyn, L. T. (1987) A rapid method to determine cation exchange capacity and exchangeable bases in calcareous, gypsiferous, saline and sodic soils. Communications in Soil Science and Plant Analysis, 18, 911–932.

    Article  Google Scholar 

  • Berman, S. S. (1988) Acid digestion of marine samples for trace element analysis using microwave heating. Analyst, 113, 159–163.

    Article  Google Scholar 

  • Bernas, B. (1968) A new method for decomposition and comprehensive analysis of silicates by atomic spectrometry. Analytical Chemistry, 40, 1682–1686.

    Article  Google Scholar 

  • Bjørlykke, K. and Jorgensen, P. (1976) Comments on the paper: Chlorite and illite in some Lower Palaeozoic mudstones of mid-Wales. Clay Minerals, 11, 165–167.

    Article  Google Scholar 

  • Blume, J. M. and Smith, E. (1954) Equilibration of exchangeable calcium and cation exchange capacity by equilibration with 45Ca. Soil Science, 77, 9–17.

    Article  Google Scholar 

  • Bodine, M. W. and Standaert, R. R. (1977) Chlorite and illite compositions from Upper Silurian rock salts, Retsof, New York. Clays and Clay Minerals, 25, 57–71.

    Article  Google Scholar 

  • Bouchet, A., Proust, D., Meunier, A. and Beaufort, D. (1988) High-charge to low-charge smectite reaction in hydrothermal alteration processes. Clay Minerals, 23, 133–146.

    Article  Google Scholar 

  • Brigatti, M. F. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177–186.

    Article  Google Scholar 

  • Busenberg, E. and Clemency, C. V. (1973) Determination of cation exchange capacity of clays and soils using an ammonia electrode. Clays and Clay Minerals, 21, 213–217.

    Article  Google Scholar 

  • De la Calle, C. and Suquet, H. (1988) Vermiculite, in Hydrous Phyllosilicates (Exclusive of Micas) (ed. S. W. Bailey), Reviews in Mineralogy, Vol. 19. Mineralogical Society of America, Washington, DC, pp. 455–496.

    Google Scholar 

  • Cardile, C. M. and Johnston, J. H. (1985) Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy Clays and Clay Minerals, 33, 295–300.

    Article  Google Scholar 

  • Chalmers, R. A. and Page, E. S. (1957) The reporting of chemical analyses of silicate rocks. Geochimica et Cosmochimica Acta, 11, 247–251.

    Article  Google Scholar 

  • Chapman, H. D. (1965) Cation exchange capacity, in Methods of Soil Analysis (Agronomy, 9) (eds C. A. Black, D. D. Evans, J. L. White, L. E. Ensminger and F. E. Clark). American Society of Agronomy, Madison. WI, pp. 891–901.

    Google Scholar 

  • Chaussidon, J. (1982) The exchange complex: the general laws of anion and cation exchange, in Constituents and Properties of Soils (eds M. Bonneau and B. Souchier). Academic Press, London, pp. 377–398.

    Google Scholar 

  • Chen, P.-Y., Wan, H.-M. and Brindley, G. W. (1976) Beidellite clay from Chang-Yuan. Taiwan: geology and mineralogy. Clay Minerals, 11, 221–233.

    Article  Google Scholar 

  • Cowking, A., Wilson, M. J., Tait, J. M. and Robertson, R. H. S. (1983) Structure and swelling of fibrous and granular saponitic clay from Orrock quarry, Fife, Scotland. Clay Minerals, 18, 49–64.

    Article  Google Scholar 

  • Craw, D. (1984) Ferrous-iron-bearing vermiculite-smectite series formed during alteration of chlorite to kaolinite. Otago schist, New Zealand. Clay Minerals, 19, 509–520.

    Article  Google Scholar 

  • Curtin, D. and Smillie, G. W. (1981) Composition and origin of smectite in soils derived from basalt in Northern Ireland. Clays and Clay Minerals, 29, 277–284.

    Article  Google Scholar 

  • Curtis, C. D., Ireland, B. J., Whiteman, J. A. et al (1984) Authigenic chlorites: problems with chemical analysis and structural formulae calculation. Clay Minerals, 19, 471–481.

    Article  Google Scholar 

  • De Soete, D. G. R., Gijbels, R. and Hoste, J. (1972) Neutron Activation Analysis. Wiley-Interscience, New York.

    Google Scholar 

  • Dolcater, D. L., Syers, J. K. and Jackson, M. L. (1970) Titanium as free oxide and substituted forms in kaolinites and other soil minerals. Clays and Clay Minerals, 18, 71–79.

    Article  Google Scholar 

  • Dolezal, J., Povondra, P. and Sulick, Z. (1968) Decomposition Techniques in Inorganic Analysis. Iliffe Books, London.

    Google Scholar 

  • Ericsson, T., Linares, J. and Lotse, E. (1984) A Mössbauer study of the effect of dithionite/citrate/bicarbonate treatment on a vermiculite, a smectite and a soil. Clay Minerals, 19, 85–91.

    Article  Google Scholar 

  • Evans, L. J. and Adams, W. A. (1975) Chlorite and illite in some Lower Palaeozoic mudstones of mid-Wales. Clay Minerals, 10, 387–397.

    Article  Google Scholar 

  • Evans, S. and Raftery, E. (1980) X-ray photoelectron studies of titanium in biotite and phlogopite. Clay Minerals, 15, 209–218.

    Article  Google Scholar 

  • Fischer, L. B. (1986) Microwave dissolution of geologic material: application to isotope dilution analysis. Analytical Chemistry, 58, 261–263.

    Article  Google Scholar 

  • Flanagan, F. J. (1973) 1972 values for international geochemical reference samples. Geochimica et Cosmochimica Acta, 37, 1189–1200.

    Article  Google Scholar 

  • Foster, M. D. (1962) Interpretation of the composition and a classification of the chlorites. US Geological Survey, Professional Paper, 414A, 1–33.

    Google Scholar 

  • Fraser, A. R. and Russell, J. D. (1969) A spectrophotometric method for determination of cation exchange capacity of clay minerals. Clay Minerals, 8, 229–230.

    Article  Google Scholar 

  • Gillman, G. P. (1979) A proposed method for the measurement of exchange properties in highly weathered soils. Australian Journal of Soil Research, 17, 129–139.

    Article  Google Scholar 

  • Goodman, B. A. (1980) Mössbauer spectroscopy, in Advanced Chemical Methods for Soil and Clay Research (eds J. W. Stucki and W L. Banwart). D. Reidel, Dordrecht.

    Google Scholar 

  • Grim, R. E. (1968) Clay Mineralogy. McGraw-Hill, New York, pp. 185–233.

    Google Scholar 

  • Groves, A. W. (1951) Silicate Analysis. Allen and Unwin, London.

    Google Scholar 

  • Güven, N. (1988) Smectites, in Hydrous Phyllosilicates (Exclusive of Micas) (ed. S. W. Bailey), Reviews in Mineralogy, Vol. 19. Mineralogical Society of America, Washington, DC, pp. 497–559.

    Google Scholar 

  • Helmke, P. A. (1982) Neutron activation analysis. Agronomy, 9, 67–84.

    Google Scholar 

  • Hey, M. H. (1941) The determination of ferrous iron in resistant silicates. Mineralogical Magazine, 26, 116–118.

    Article  Google Scholar 

  • Hillebrand, W. F. (1919) The analysis of silicate and carbonate rocks. US Geological Survey Bulletin, 700.

    Google Scholar 

  • Hillebrand, W. F., Lundell, G. E. F., Bright, H. A. and Hoffman, J. I. (1953) Applied Inorganic Analysis. John Wiley, New York.

    Google Scholar 

  • Hillier, S. and Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Minerals, 26, 149–168.

    Article  Google Scholar 

  • Ianovici, V., Neacsu, G. and Neacsu, V. (1983) Saponite from Moldova Noua, Romania. Clay Minerals, 18, 205–207.

    Article  Google Scholar 

  • Ildefonse, P., Capin, E. and Velde, B. (1979) A soil vermiculite formed from a meta-gabbro, Loire-Atlantique, France. Clay Minerals, 14, 201–210.

    Article  Google Scholar 

  • Ingamells, C. O. (1966) Absorptiometric methods in rapid silicate analysis. Analytical Chemistry, 38, 1228–1234.

    Article  Google Scholar 

  • Jackson, M. L. (1962) Soil Chemical Analysis. Taylor, Garnett, Evans and Co., Watford, p. 33.

    Google Scholar 

  • Jahren, J. S. and Aagaard, P. (1989) Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry. Clay Minerals, 24, 157–170.

    Article  Google Scholar 

  • Jeffery, P. G. (1981) Chemical Methods of Rock Analysis. Pergamon Press, Oxford.

    Google Scholar 

  • Johnson, W. M. and Maxwell, J. A. (1981) Rock and Mineral Analysis. John Wiley, New York.

    Google Scholar 

  • Jones, A. A. (1982) X-ray fluorescence spectrometry. Agronomy, 9, 85–121.

    Google Scholar 

  • Kanai, Y. (1990) Simultaneous determination of iron(II) and iron(III) oxides in geological materials by ion chromatography. Analyst, 115, 809–812.

    Article  Google Scholar 

  • Kelley, W. P. (1948) Cation Exchange in Soils. Rheinhold, New York.

    Google Scholar 

  • Kemp, A. J. and Brown C. J. (1990) Microwave digestion of carbonate rock samples for chemical analysis. Analyst, 115, 1197–1199.

    Article  Google Scholar 

  • Khoury, H. N., Mackenzie, R. C., Russell, J. D. and Tait, J. M. (1984) An iron-free volkonskoite. Clay Minerals, 19, 43–57.

    Article  Google Scholar 

  • Kohyama, N., Shimoda, S. and Sudo, T. (1973) Iron-rich saponite (ferrous and ferric forms). Clays and Clay Minerals, 21, 229–237.

    Article  Google Scholar 

  • Kolthoff, I. M. and Sandell, E. B. (1956) Text book of Quantitative Inorganic Analysis. Macmillan, New York.

    Google Scholar 

  • Lamonthe, P. J., Fries, T. L. and Consul, J. J. (1986) Evaluation of a microwave oven system for the dissolution of geologic samples. Analytical Chemistry, 58, 1881–1886.

    Article  Google Scholar 

  • Langmyhr, F. G. and Graff, P. R. (1965) A contribution to analytical chemistry of silicate rocks; a scheme of analysis for eleven main constituents based on decomposition by hydrofluoric acid. Norges Geologiske Undersolkelse, 230, 1–128.

    Google Scholar 

  • Lim, C. H. and Jackson, M. L. (1982) Dissolution for total elemental analysis. Agronomy, 9, 1–11.

    Google Scholar 

  • Lundell, G. E. F. and Hoffman, J. I. (1938) Outlines of Methods of Chemical Analysis. Wiley, New York.

    Google Scholar 

  • Mackenzie, R. C. (1984) Constitution of and relationships among volkonskoites. Clay Minerals, 19, 669–671.

    Article  Google Scholar 

  • Macneill, S. (1978) A chemical investigation of a chlorite intergrade mineral in the Keuper Marl. Clay Minerals, 13, 357–365.

    Article  Google Scholar 

  • Mehlich, A. (1948) Determination of cation- and anion-exchange properties of soils. Soil Science, 66, 429–445.

    Article  Google Scholar 

  • Metson, A. J. (1956) Methods of chemical analysis for soil survey samples. New Zealand Department of Scientific and Industrial Research, 12, 83–90.

    Google Scholar 

  • Morrison, S. J. and Parry, W. T. (1986) Dioctahedral corrensite from Permian Red Beds, Lisbon Valley, Utah. Clays and Clay Minerals, 34, 613–624.

    Article  Google Scholar 

  • Murphy, J. and Riley, J. P. (1962) A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  Google Scholar 

  • Nadeau, P. H. and Bain, D. C. (1986) Composition of some smectites and diagenetic illitic clays and implications for their origin. Clays and Clay Minerals, 34, 455–464.

    Article  Google Scholar 

  • Nadeau, P. H., Farmer, V. C., McHardy, W. J. and Bain, D. C. (1985) Compositional variations of the Unterrupsroth beidellite. American Mineralogist, 70, 1004–1010.

    Google Scholar 

  • Newman, A. C. D. and Brown, G. (1987) The chemical constitution of clays, in Chemistry of Clays and Clay Minerals (ed. A. C. D. Newman). Mineralogical Society, London, pp. 1–128.

    Google Scholar 

  • Nicholls, G. D. (1960) Techniques in sedimentary geochemistry. Determination of ferrous iron contents of carbonaceous shales. Journal of Sedimentary Petrology, 30, 603–612.

    Google Scholar 

  • Noack, Y. and Colin, F (1986) Chlorites and chloritic mixed-layer minerals in profiles on ultrabasic rocks from Moyango (Ivory Coast) and Angiquinho (Brazil). Clay Minerals, 21, 171–182.

    Article  Google Scholar 

  • Norrish, K. and Chappell, B. W. (1977) X-ray fluorescence spectrometry, in Physical Methods in Determinative Mineralogy (ed. J. Zussman). Academic Press, London, pp. 201–272.

    Google Scholar 

  • Özkan, A. I. and Ross, G. J. (1979) Ferruginous beidellites in Turkish soils. Soil Science Society of America, Proceedings, 43, 1242–1248.

    Article  Google Scholar 

  • Papp, C. S. E. and Fischer, L. B. (1987) Application of microwave digestion to the analysis of peat. Analyst, 112, 337–338.

    Article  Google Scholar 

  • Paquet, H., Duplay, J., Valleron-Blanc, M. M. and Millot, G. (1987) Octahedral compositions of individual particles in smectite-palygorskite and smectite-sepiolite assemblages, in Proceedings, International Clay Conference, Denver, pp. 73–77.

    Google Scholar 

  • Parfitt, R. L. (1978) Anion adsorption by soils and soil material. Advances in Agronomy, 30, 1–50.

    Article  Google Scholar 

  • Pleijsier, L. K. (1986) Proceedings of an International Workshop on the Laboratory Method and Data Exchange Programme. International Soil Reference and Information Centre, (ISRIC), Wageningen, The Netherlands.

    Google Scholar 

  • Proust, D. (1982) Supergene alteration of metamorphic chlorite in an amphibolite from the Massif Central, France. Clay Minerals, 17, 159–173.

    Article  Google Scholar 

  • Reay, A. (1981) The effect of disc mill grinding on some rock-forming minerals. Mineralogical Magazine, 44, 179–182.

    Article  Google Scholar 

  • Rengasamy, P. (1976) Substitution of iron and titanium in kaolinites. Clays and Clay Minerals, 24, 265–266.

    Article  Google Scholar 

  • Rhoades, J. D. (1982) Cation exchange capacity, in Methods of Soil Analysis (Agronomy, 9) (eds A. L. Page, R. H. Miller and D. R. Keeney), American Society of Agronomy, Madison, WI, pp. 149–157.

    Google Scholar 

  • Russell, J. D., Birnie, A. and Fraser, A. R. (1984) High-gradient magnetic separation (HGMS) in soil clay mineral studies. Clay Minerals, 19, 771–778.

    Article  Google Scholar 

  • Schultz, D. G. and Dixon, J. B. (1979) High-gradient magnetic separation of iron oxides and other magnetic minerals from soil clays. Soil Science Society of America, Proceedings, 43, 793–799.

    Article  Google Scholar 

  • Schultz, L. G. (1982) Chemical characteristics and origin of Ordovician K-bentonites along the Cincinnati Arch: a discussion. Clays and Clay Minerals, 30, 445–446.

    Article  Google Scholar 

  • Searle, P. L. (1986) The measurement of soil cation exchange properties using the single extraction silver thiourea method: an evaluation using a range of NZ soils. Australian Journal of Soil Research, 24, 193–200.

    Article  Google Scholar 

  • Shapiro, L. (1960) A spectrophotometric method for determination of FeO in rocks. US Geological Survey Research, 400B, B496–B497.

    Google Scholar 

  • Shapiro, L. (1967) Rapid analysis of rocks and minerals by a single-solution method. US Geological Survey Professional Paper, 575B, B187–B191.

    Google Scholar 

  • Shapiro, L. and Brannock, W. W. (1952) Rapid analysis of silicate rocks. US Geological Survey Circular, 165, 17 pp.

    Google Scholar 

  • Shapiro, L. and Brannock, W. W. (1956) Rapid analysis of silicate rocks. US Geological Survey Bulletin, 1036–C, 56 pp.

    Google Scholar 

  • Srodon, J., Morgan, D. J., Eslinger, E. V., Eberl, D. D. and Karlinger, M. R. (1986) Chemistry of illite/smectite and end-member illite. Clays and Clay Minerals, 34, 368–378.

    Article  Google Scholar 

  • Stucki, J. W. (1981) The quantitative assay of minerals for Fe2+ and Fe3+ using 1, 10-phenanthroline: II, a photochemical method. Soil Science Society of America, Journal, 45, 638–641.

    Article  Google Scholar 

  • Stucki, I. W. (1988) Structural iron in smectites, in Iron in Soils and Clay Minerals (eds J. W. Stucki, B. A. Goodman and U. Schwertmann). NATO ASI Series, Reidel, Dordrecht, pp. 625–675.

    Chapter  Google Scholar 

  • Thomas, G. W. (1977) Historical developments in soil chemistry: ion exchange. Soil Science Society of America, Journal, 41, 230–238.

    Article  Google Scholar 

  • Thomson, M. and Walsh, I. N. (1983) Handbook of Inductively Coupled Plasma Spectrometry. Blackie, Glasgow and London.

    Google Scholar 

  • Ure, A. M. (1983) Atomic absorption and flame emission spectrometry, in Soil Analysis (ed. K. A. Smith). Marcel Dekker, New York.

    Google Scholar 

  • Van Loon, J. C. (1965) Titrimetric determination of the iron (II) oxide content of silicates using potassium iodate. Talanta, 12, 599–603.

    Article  Google Scholar 

  • Verbeek, A. A., Mitchell, M. C. and Ure, A. M. (1982) The analysis of small samples of rock and soil by atomic absorption and emission spectrometry after a lithium metaborate fusion/nitric acid dissolution procedure. Analytica Chimica Acta, 135, 215–228.

    Article  Google Scholar 

  • Volborth, A. (1964) Biotite mica effect in X-ray spectrographic analysis of pressed rock powders. American Mineralogist, 49, 634–643.

    Google Scholar 

  • Wada K. and Okamura, Y. (1977) Measurements of exchange capacities and hydrolysis as a means of characterizing cation and anion retention by soils, in Proceedings, International Seminar on Soil Environment and Fertility Management in Intensive Agriculture, Tokyo, Society of Scientific Soil Manure, Japan, Tokyo, pp. 811–815.

    Google Scholar 

  • Wada, K., Kakuto, Y., Wilson, M. A. and Hanna, J. V. (1991) The chemical composition and structure of a 14 Ã… intergradient mineral in a Korean Ultisol. Clay Minerals, 26, 449–461.

    Article  Google Scholar 

  • Warren, E. A. and Curtis, C. D. (1989) The chemical composition of authigenic illite within two sandstone reservoirs as analysed by TEM. Clay Minerals, 24, 137–156.

    Article  Google Scholar 

  • Warren, E. A. and Ransom, B. (1992) The influence of analytical error upon the interpretation of chemical variations in clay minerals. Clay Minerals, 27, 193–209.

    Article  Google Scholar 

  • Weaver, C. E. and Pollard, L. D. (1973) The Chemistry of Clay Minerals. Elsevier, Amsterdam.

    Google Scholar 

  • Weiss, A., Mehler, A., Koch, G. and Hoffman, U. (1956) Anion exchange capacity of clay minerals. Zeitschrift fuer Anorganische und Allgemeine Chemie, 284, 247–271.

    Article  Google Scholar 

  • Whittle, C. K. (1986) Comparison of sedimentary chlorite compositions by X-ray diffraction and analytical TEM. Clay Minerals, 21, 937–947.

    Article  Google Scholar 

  • Wilson, A. D. (1960) The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst, 85, 823–827.

    Article  Google Scholar 

  • Wilson, M. J. and Mitchell, B. D. (1979) Comparative study of a vertisol and an entisol from the Blue Nile plains of Sudan. Egyptian Journal of Soil Science, 19, 207–220.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bain, D.C., Smith, B.F.L. (1994). Chemical analysis. In: Wilson, M.J. (eds) Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0727-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0727-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4313-7

  • Online ISBN: 978-94-011-0727-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics