Skip to main content

Electrochemical aspects of chemical waste minimisation

  • Chapter
Book cover Chemistry of Waste Minimization

Abstract

Electrochemistry is an established technology in industry and its applications play an important role in the commercial world [1]. Rapidly expanding areas are in the treatment of effluents and in recycling. Under the general umbrella of electrochemical technologies for waste minimisation, there are three broad categories of processes: direct and indirect electrochemical processes and electrochemically driven separations. Although invariably used for aqueous based constituents, there are applications in the treatment of solids, gases and organic species. The scope of electrochemistry in waste minimisation is outlined in Table 11.1. The processes are varied and are used for:

  1. (a)

    the recovery of valuable components from waste waters, e.g. metal ions such as Cu, Pb, Hg, Au, Ag, etc.

  2. (b)

    treatment of waste waters containing cyanide, chromium species, phenols, PCBs etc.

  3. (c)

    removal of acid gases such as SO2 and H2S from combustion gas

  4. (d)

    purification of water using disinfection with Cl2, OCl, OH and O3

  5. (e)

    recycling of constituents in plating operations and reagents for oxidations and reductions, e.g. Cr(IV), Ce(IV) ions

  6. (f)

    separation processes for solid/liquid and liquid/liquid dispersions

  7. (g)

    separation and recycling of salts via electrochemical membrane processes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Pletcher and F.C. Walsh, Industrial Electrochemistry, 1990, 2nd edn, Chapman & Hall, London.

    Google Scholar 

  2. K. Scott, Developments in Chemical Engineering and Mineral Processing, 1993, 1, 71.

    Article  CAS  Google Scholar 

  3. D.E. Danly, Emerging Opportunities for Electro-organic Chemistry, 1984, Marcel Dekker, New York.

    Google Scholar 

  4. K. Scott, Electrochemistry, Clean Technology for the Environment and Synthesis, RSC, to be published 1995.

    Google Scholar 

  5. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 1966, Pergamon, Oxford.

    Google Scholar 

  6. G.H. Kelsall, Electrochemical Engineering Course, 1994, July 5–7th, Newcastle upon Tyne.

    Google Scholar 

  7. D. Pletcher, F.C. Walsh and I. Whyte, I. Chem. E. Symp. Ser. No. 116, 1990, 195–218.

    Google Scholar 

  8. Bewt (Water Engineers) Ltd., Technical Brochure, Profit from Effluent, Tything Road, Alcester, Warwickshire, UK.

    Google Scholar 

  9. C.J. Brown, Electrochemistry for a Cleaner Environment, 1992, Ch. 7 (eds J.D. Genders and N.L. Weinberg), The Electrosynthesis Co. Inc., New York.

    Google Scholar 

  10. F.C. Walsh and G. Wilson, Trans. Inst. Met. Finish., 1986, 64, 55–61.

    CAS  Google Scholar 

  11. D. Robinson and F.C. Walsh, Hydrometallurgy, 1991, 26, 93–114

    Article  CAS  Google Scholar 

  12. D. Robinson and F.C. Walsh, Hydrometallurgy, 1991, 26, 115–133.

    Article  CAS  Google Scholar 

  13. R. Kammel, NATO Conf. Ser 6–10, 1984, Hydrometall. Process Fundam., p. 617.

    Google Scholar 

  14. R.E.W. Jansson and G.A. Ashworth, J. App. Electrochem., 1977, 7, 309.

    Article  CAS  Google Scholar 

  15. C.M.S. Raats, H.F. Boon and G. van der Heiden, Chem. and Ind., 1978, 1 July, 465–468.

    Google Scholar 

  16. K. Scott, J. App. Electrochem., 1988, 18, 4.

    Google Scholar 

  17. R.P. Tison, J. Electrochem. Soc., 1981, 128(2), 317.

    Article  CAS  Google Scholar 

  18. American Metal Markets, 1990, June 29th and November 7th.

    Google Scholar 

  19. G. Lacoste, Electrochemical Cell Design and Optimisation Procedures, Dechema monograph, vol. 123, 1991, p. 411.

    Google Scholar 

  20. B.K. Loveday, R.A. Lynn and J.P. Martin, Research at the National Institute for Metallurgy on the Engineering Aspects of Copper Electrowinning, 1975, S. Africa; National Institute for Metallurgy, NIM Report No. 1693.

    Google Scholar 

  21. P.R. Amman, G.M. Cook, C. Portal and W.E. Sonstelie, in Extraction Metallurgy of Copper, vol. 11, 1976, J.C. Yannopoulos and J.C. Argarwal, New York, AIME, pp. 994–1008.

    Google Scholar 

  22. K.J. Muller Electrochemical Cell Design and Optimisation Procedures, Dechema monograph, vol. 123, 1991, p. 199.

    Google Scholar 

  23. K.B. Keating and J.M. Williams, Resource Recovery Conserv., 1976, 2, 39–55.

    Article  CAS  Google Scholar 

  24. P.M. Robertson, B. Scholder, G. Theis and N. Ibl, Chem. Ind., 1978, 13, 459–465.

    Google Scholar 

  25. D. Simmonssen, J. App. Electrochem., 1984, 14, 595.

    Article  Google Scholar 

  26. J. Farkas and G.D. Mitchell, Separation of heavy metals and other trace contaminants, A.I.Chem. E. Symp. Ser., 81, 1985, (243), 57–66.

    CAS  Google Scholar 

  27. D. Pletcher, I. Whyte, F.C. Walsh and J.P. Millington, J. App. Electrochem., 1993, 23, 82.

    Article  CAS  Google Scholar 

  28. A.M. Polcaro and S. Palmas, Electrochemical Engineering and the Environment, I. Chem. E. Symp. Ser. No 127, 1992, p. 85.

    Google Scholar 

  29. T. Stefanowicz, T. Golik, S. Napieralska and M. Osinska, Resources, Conservation and Recycling, 1991, 6, 61–69.

    Article  Google Scholar 

  30. Clean Technology Bulletin, Environmental Protection Technology Scheme, 1989, November, DoE, UK, D119NJ.

    Google Scholar 

  31. M. Maja et al., Electrochemical Engineering, I. Chem. E. Symp. Ser. No. 98, 1986, pp. 155–172.

    Google Scholar 

  32. U. Ducati, Italian Patent 23745 AA/81.

    Google Scholar 

  33. Div. Tech. Soc. TNO Report 89-127/R.22/CAP, Recycling of Spent Batteries, 1989.

    Google Scholar 

  34. Z. Xue, Z. Hua, N. Yao and S. Chen, Sep. Sci. Tech., 1992, 27(2), 213.

    Article  CAS  Google Scholar 

  35. I. Dalrymple, Electrochemical Engineering Course, 1994, July, Newcastle upon Tyne.

    Google Scholar 

  36. C.J. Brown, Separation Processes in Hydrometallurgy, 1987 (ed. G.A. Davies), Ellis Horwood, Chichester, p. 379.

    Google Scholar 

  37. M.W. Davis and T. Sandy, 44th Purdue Industrial Waste Conference Proceedings, 1990, Lewis Publishers, Chelsea, Michigan, p. 649.

    Google Scholar 

  38. N.J. Bridgewater, C.P. Jones and M.D. Neville, J. Chem. Tech. and Biotech., 1991, 469.

    Google Scholar 

  39. S. Messen, F. Persin and M. Rumeau, Abstract 3.7–18, 4th World Congress on Chemical Engineering, 1991, Karlsruhe, 16–21 June, Germany.

    Google Scholar 

  40. A.S. Sairafi, Electro-cementation of Silver Using a Fluidised Bed, 1993, PhD Thesis, University of Newcastle upon Tyne.

    Google Scholar 

  41. J. O’M Bockris (ed.), Electrochemistry of Cleaner Environments, Plenum Press, New York.

    Google Scholar 

  42. G.H. Kelsall, S. Savage and D. Brandt, J. Electrochem. Soc., 1991, 138, 117.

    Article  CAS  Google Scholar 

  43. D. Golub and O. Yoram, J. App. Electrochem., 1989, 19(3), 311–316.

    Article  CAS  Google Scholar 

  44. M.S.E. Abdo and G.H. Sedahmed, Abstract 3.7–10, 4th World Congress on Chemical Engineering, 1991, Karlsruhe, 16–21 June, Germany.

    Google Scholar 

  45. ICI Applied Electrotechnology Newsletter, 1992, February.

    Google Scholar 

  46. P. Meszaros, I. Orszang, B. Kovacs, G.Y. Malovecczky and Z. Kovacs, Hungarian J. of Ind. Chem., 1984, 12, 163–171.

    CAS  Google Scholar 

  47. P.W.T. Lu and R.L. Ammon, J. Electrochem. Soc., 1980, 127(120), 2610.

    Google Scholar 

  48. S.E. Lyke and S.H. Langer, J. Electrochem. Soc., 1991, 138, 1682.

    Article  CAS  Google Scholar 

  49. G. Kreysa and A. Storck, Electrochemical Cell Design and Optimisation Procedures, 1990, Dechema monograph vol. 123, p. 225.

    Google Scholar 

  50. B.D. Struck, H. Neumeister and A. Naoumidis, Int. J. Hydrogen Energy, 1986, 11, 541.

    Article  CAS  Google Scholar 

  51. K. Scott and C.F. Odouza 1992, I. Chem. E. Research Event, January.

    Google Scholar 

  52. D. van Velzen and H. Langenkamp, Electrochemical Cell Design and Optimisation Procedures, Dechema monograph vol. 123, 1990, p. 245.

    Google Scholar 

  53. S.H. Langer, M.J. Foral, J.A. Coucci and K.T. Pate, Environmental Progress, 1986, 5(4), 277.

    Article  CAS  Google Scholar 

  54. T. Vitanov, E. Budevski, I. Nikolov, K. Petrov, K.V. Naidener and Ch. Christov, I. Chem. E. Symp. Ser., 1991, No. 116, 251.

    Google Scholar 

  55. H. Bart, R. Morr and K. Burtscher, 1991, Abstract 3.5–13. 4th World Congress on Chemical Engineering 1991, Karlsruhe, 16–21 June, Germany.

    Google Scholar 

  56. G. Kreysa, J.M. Bisang, W. Kochanek and G. Linzbach, J. App. Electrochem., 1985, 15, 639–647.

    Article  CAS  Google Scholar 

  57. G.H. Kelsall and D.H. Robbins, Trans. I. Chem. E., 1991, 69, 43.

    CAS  Google Scholar 

  58. S.H. Langer and K.T. Pate, Ind. Eng. Chem. Prod. Res. Dev., 1983, 22, 264–271.

    Article  CAS  Google Scholar 

  59. B. Dandapani, B.R. Scharifker and J. O’M. Bockris, Proceedings of the Symposium on Diaphragms, Separators and Ion-Exchange Membranes (eds J.W. van Zee, R.E. White, K. Kinoshita and H.S. Burney), 1986, pp. 228–237.

    Google Scholar 

  60. D.W. Kalina and E.T. Maas, Int. J. Hydrogen Energy, 1985, 10, 157.

    Article  CAS  Google Scholar 

  61. D.C. Olsen, US Patents No. 4 443 424 and 4 540 501, 1984 and 1985.

    Google Scholar 

  62. J. Winnick, in Advances in Electrochemical Science and Engineering (ed. H. Genscher and C.W. Tobias), Vol. 1, 1990, VCH, Weinheim.

    Google Scholar 

  63. N.L. Weinberg, Electrochemistry for a Cleaner Environment (eds D. Genders and N. Weinberg), Ch. 16, 1992, Electrosynthesis Co. Inc., New York, p. 323.

    Google Scholar 

  64. C. Comninellis and E. Plattner, Chimia, 1988, 42(7/8), 250.

    CAS  Google Scholar 

  65. S. Stucki, R. Kotz, W. Suter and B. Carter, J. App. Electrochem., 1991, 21, 99–104.

    Article  CAS  Google Scholar 

  66. R. Koetz, S. Stucki and B. Career, J. App. Electrochem., 1991, 21(1), 14–20.

    Article  CAS  Google Scholar 

  67. L.J. Berchmans and R. Vijayavalli, Indian J. Environ. Health, 1989, 31(4), 309–313.

    CAS  Google Scholar 

  68. M.S.E. Abdo, G.A. Alenezi and A. Al-Haddad, J. Environ. Sci. Health, Part A, 1986, A21(6), 487–497.

    CAS  Google Scholar 

  69. G.A. Alenezi, J. Environ. Sci. Health, Part A, 1990, A25(l), 67–79.

    CAS  Google Scholar 

  70. J.C. Card, M.J. Foral and S.H. Langer, Environ. Sci. Technol., 1988, 22, 1499–1505.

    Article  CAS  Google Scholar 

  71. O.A. Fadali, Indian Chem. Eng., 1989, 31(3), 48–52.

    CAS  Google Scholar 

  72. C.C. Ho, C.Y. Chan and K.H. Khou, J. Chem. Techn. Biotech., 1986, 36(1), 7–14.

    Article  CAS  Google Scholar 

  73. J. Anna and K. Marek, Environ. Prot. Eng., 1986, 14(2), 59.

    Google Scholar 

  74. R.N. Gedye, Y.N. Sadana, A.C.E. Enmonds and M.L. Langlois, J. App. Electrochem., 1987, 17, 731–736.

    Article  CAS  Google Scholar 

  75. T.A. Kharlamova and N.I. Mitashova, Sov. Chem. Ind., 1986, 18(4), 18–26.

    Google Scholar 

  76. A.M. Couper and S. Bullen, Electrochemical Engineering and the Environment, I. Chem. E. Symp. Ser. No. 127, 1992, p. 49.

    Google Scholar 

  77. P.D. Francis, Electrochemical Technique for a Cleaner Environment, SCI Meeting, 1991, 19 April, London.

    Google Scholar 

  78. J.C. Farmer, F.T. Wang, P.R. Lewis and L.J. Summers, Electrochemical Engineering and the Environment, I. Chem. E. Symp. Ser. No. 127, 1992 ref. 74, p. 203.

    Google Scholar 

  79. M. Sudoh, T. Kodera, H. Hino and H. Shimamura, J. Chem. Eng., 1988, 21(2), Japan, 198.

    Article  CAS  Google Scholar 

  80. P.C. Franklin, J. Darlington, T. Soluki and N. Trans, J. Electrochem. Soc., 1991, 138, 2285.

    Google Scholar 

  81. D.F. Steele, Chem. in Britain, 1991, October, 915.

    Google Scholar 

  82. F. Beck, H. Shulz and B. Wermeckes, Chem. Eng. Technol., 1990, 13, 371–375.

    Article  CAS  Google Scholar 

  83. D. Schmmal, J. van Erkel and P.J. van Duin, Electrochemical Engineering, I. Chem. E. Symp. Ser. No. 98, 1986, p. 259.

    Google Scholar 

  84. S.S. Shukla, A. Shukla, A. Nguyen, C. Lee, C.M. Mills and D. Mahheshwari, J. Hazardous Materials, 1990, Proc. of Gulf Coast Hazardous Substance Research Centre, Second annual conf., 2–3 Sept., 24, 287.

    Google Scholar 

  85. D.Z. Mazur and N.L. Weinberg, US Patent 4 702 804, 1987.

    Google Scholar 

  86. G.H. Kelsall, A Review of Hypochlorite Electrogeneration, ECRC/N1059 report, 1977, June.

    Google Scholar 

  87. Chlor-o-Safe Technical Brochure, Electrocell AB, s-183, 66 Taby, Sweden.

    Google Scholar 

  88. Department of the Environment Contract PECD 7/7/138, January 1991, Newcastle Research, DTI report.

    Google Scholar 

  89. L. Kaba, C.E. Verostoko and M.G. Duncan, 21st International Conference on Environmental Systems, 1991, July 15–18, SAE, pp. 131–140.

    Google Scholar 

  90. D.F. Ollis, E. Pelizzetti and N. Serpone, Envir. Sci. Technol., 1991, 25, 1522.

    Article  CAS  Google Scholar 

  91. H. Gerischer, Electrochimica Acta, 1993, 38, 3–9.

    Article  CAS  Google Scholar 

  92. S.N. Frank and A.J. Bard, J. Am. Chem. Soc., 1977, 99(14), July, 4667.

    Article  CAS  Google Scholar 

  93. A.I. Zouboulis, K.A. Matis and G.A. Stalidis, Nato ASI Series E: Applied Science (eds P. Mavros and K.A. Matis), vol. 208, Kluwer Academic Publishers, 1992, p. 475.

    Google Scholar 

  94. K. Ohsas, H. Nakakura and M. Sambuichi, Abstract 3.6–11, 4th World Congress on Chemical Engineering, 1991, Karlsruhe, 16–21 June.

    Google Scholar 

  95. S.L. Cook and K. D. Uhrich, Proceedings of the 44th Purdue Industrial Waste Conference, 1989, Lewis Publishers, pp. 373–383.

    Google Scholar 

  96. Membrane Technology International Newsletter, Lewis Publishers, USA, 1991.

    Google Scholar 

  97. R.C. Alkire and R.S. Eisinger, J. Electrochem. Soc., 1983, 130(1), 85–101.

    Article  CAS  Google Scholar 

  98. M.C Porter (ed.), Handbook of Industrial Membrane Technology, Noyes, New Jersey, 1990.

    Google Scholar 

  99. K. Scott, Membrane Separation Technology, 1990, Elsevier, Oxford.

    Google Scholar 

  100. P.S. Cartwright, Plating and Surface Finishing, 1985, Aug, 28.

    Google Scholar 

  101. J.S. Linstedt and W.G. Millmann, Desalination, 1985, 56, 17–35.

    Article  Google Scholar 

  102. A.D. Martin, I. Chem. E. Symp. Ser., No. 127, 1992, 153.

    CAS  Google Scholar 

  103. J.R. Ochoa, G.J. Santa-Olalla, G.A. de Diego and J.I. Martin, J. App. Electrochem., 1993, 23, 56.

    Article  Google Scholar 

  104. J.W. Rowe and P. Gregor, US Patent 4 584 057, 1986, April.

    Google Scholar 

  105. A.E. Simpson and G.A. Buckley, Symposium on Advances in Reverse Osmosis and Ultrafiltration, Toronto, 1988, 35.

    Google Scholar 

  106. K.N. Mani and F.P. Chandla, Membrane Separation Technology, Proceedings of Int. Tech. Conf. Brighton, UK, 1989, 235.

    Google Scholar 

  107. J.L. Valdes, G. Cadet and J.W. Mitchell, J. Electrochem. Soc., 1991, 138(6), 1654.

    Article  CAS  Google Scholar 

  108. K. Scott, Electrochimica Acta, 1991, 36, 1447.

    Article  CAS  Google Scholar 

  109. J.C Yu, M.M. Baizer and K. Nobe, J. Electrochem. Soc., 1988, 135(6), 1400.

    Article  CAS  Google Scholar 

  110. J.C. Yu, M.M. Baizer and K. Nobe, J. Electrochem. Soc., 1988, 135(6), 1392.

    Article  CAS  Google Scholar 

  111. Processing and Manufacturing Dinitrogen Pentoxide, Defence Technology Enterprises Ltd., Norfolk House, London.

    Google Scholar 

  112. J.D. Genders and D. Pletcher (eds), Electrosynthesis: From Pilot, to Plant, to Production, ch. 10, 1990, The Electrosynthesis Co. Inc., New York.

    Google Scholar 

  113. D. Degner, Organic Electrosynthesis in Industry, 1988, Topics in Current Chemistry, vol. 148.

    Google Scholar 

  114. N.L. Weinberg and B.V. Tilak (eds), Technique of Electro-organic Synthesis, Part III, Scale-up and Engineering aspects, 1982, J. Wiley, New York.

    Google Scholar 

  115. E. Steckham, Ang. Chem. Int. Ed. Engl., 1986, 25, 683.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Scott, K. (1995). Electrochemical aspects of chemical waste minimisation. In: Clark, J.H. (eds) Chemistry of Waste Minimization. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0623-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0623-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4273-4

  • Online ISBN: 978-94-011-0623-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics