Skip to main content

Fundamentals of non-aqueous enzymology

  • Chapter

Abstract

Non-aqueous enzymology is such a rapidly developing research area that it has attracted interest from chemists, biochemists and chemical engineers. This has been reflected by an explosive growth of the literature (for reviews see Dordick, 1989; Klibanov, 1989; Blinkovsky et al., 1992; Russell et al., 1992; Halling, 1994). It is generally accepted that when enzymes are placed in organic media, they exhibit altered properties such as enhanced thermostability (Ayala et al., 1986; Wheeler and Croteau, 1986), altered specificity (see review by Wescott and Klibanov, 1994), molecular memory (Ståhl et al., 1991; Dabulis and Klibanov, 1993), and the ability to catalyze reactions that are kinetically or thermodynamically impossible in aqueous solution (Kuhl et al., 1990; West et al., 1990). In addition, the industrial utility of biocatalysts is enhanced because of the increased solubility of hydrophobic substrates, ease of product and enzyme recovery, and reduced risk of microbial contamination of reactors. In order to take full advantage of these perceived benefits of non-aqueous enzymology, we must first understand the fundamental interaction between a solvent and an enzyme. The structural and mechanistic integrity of the protein, the role of water and solvents on activity, and the specific solvent effects on the kinetics and thermodynamics of enzyme-catalyzed processes, are all central to the development of our understanding of non-aqueous enzymology and its applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, K.A.H., Chung, S.-H. and Klibanov, A.M. (1990) Kinetic isotope effect investigation of enzyme mechanism in organic solvents. J. Amer. Chem. Soc., 112, 9418–9419.

    CAS  Google Scholar 

  • Affleck, R., Xu, Z.-R, Suzawa, V., Focht, K., Clark, D.S. and Dordick, J.S. (1992a) Enzymatic catalysis and dynamics in low-water environments. Proc. Natl. Acad. Sci. USA, 89, 1100–1104.

    CAS  Google Scholar 

  • Affleck, R., Haynes, C.A. and Clark, D.S. (1992b) Solvent dielectric effects on protein dynamics. Proc. Natl. Acad. Sci. USA, 89, 5167–5170.

    CAS  Google Scholar 

  • Ayala, G., Gómez-Puyou, T., Gómez-Puyou, A. and Darszon, A. (1986) Thermostability of membrane enzymes in organic solvents. FEBS Lett., 203, 41–43.

    CAS  Google Scholar 

  • Barbas, C.F., Matos, U.R., West, J.B. and Wong, C-H. (1988) A search for peptide ligase: cosolventmediated conversion of proteases to esterases for irreversible synthesis of peptides. J. Amer. Chem. Soc., 110, 5162–5166.

    CAS  Google Scholar 

  • Blanco, R.M., Rakels, J.L.L., Guisán, J.M. and Halling, P.J. (1992) Effect of thermodynamic water activity on amino-acid ester synthesis catalyzed by agarose-chymotrypsin in 3-pentanone. Biochim. Biophys. Acta, 1156, 67–70.

    CAS  Google Scholar 

  • Blinkovsky, A.M., Martin, B.D. and Dordick, J.S. (1992) Enzymology in monophasic organic media. Current Opinion in Biotechnology, 3, 124–129.

    CAS  Google Scholar 

  • Bone, S. and Pethig, R. (1985) Dielectric studies of protein hydration and hydration-induced flexibility. J. Mol. Biol., 181, 323–326.

    CAS  Google Scholar 

  • Bonneau, P.R., Eyer, M., Graycar, T.P., Estell, D.A. and Jones, J.B. (1993) The effects of organic solvents on wild-type and mutant subtilisin-catalyzed hydrolyses. Bioorg. Chem., 21, 431–438.

    CAS  Google Scholar 

  • Burke, P.A., Smith, S.O., Bachovchin, WW. and Klibanov, A.M. (1989) Demonstration of structural integrity of an enzyme in organic solvents by solid-state NMR. J. Amer. Chem. Soc., 111, 8290–8291.

    CAS  Google Scholar 

  • Burke, P.A., Griffin, R.G. and Klibanov, A.M. (1992) Solid-state NMR assessment of enzyme active center structure under nonaqueous conditions. J. Biol. Chem., 267, 20057–20064.

    CAS  Google Scholar 

  • Burke, P.A., Griffin, R.G. and Klibanov, A.M. (1993) Solid-state nuclear magnetic resonance investigation of solvent dependence of tyrosyl ring motion in an enzyme. Biotechnol. Bioeng., 42, 87–94.

    CAS  Google Scholar 

  • Cantarella, M., Cantarella, L. and Alfani, F. (1991) Hydrolytic reactions in two-phase systems. Effect of water-immiscible organic solvents on stability and activity of acid phosphatase, β-glucosidase, and β-fructofuranosidase. Enzyme Microb. Technol., 13, 547–553.

    CAS  Google Scholar 

  • Cassells, J.M. and Halling, P.J. (1988) Effect of thermodynamic water activity on thermolysin-catalysed peptide synthesis in organic two-phase systems. Enzyme Microb. Technol., 10, 486–491.

    CAS  Google Scholar 

  • Chatterjee, S. and Russell, A.J. (1992a) Activity of thiolsubtilisin in organic solvents. Biotechnol. Prog., 8, 256–258.

    CAS  Google Scholar 

  • Chatterjee, S. and Russell, A.J. (1992b) Determination of equilibrium and individual rate constants for subtilisin-catalyzed transesterification in anhydrous environments. Biotechnol. Bioeng., 40, 1069–1077.

    CAS  Google Scholar 

  • Chatterjee, S. and Russell, A.J. (1993) Kinetic analysis of the mechanism for subtilisin in essentially anhydrous organic solvents. Enzyme Microb. Technol., 15, 1022–1029.

    CAS  Google Scholar 

  • Clement, G.E. and Bender, M.L. (1963) The effect of aprotic dipolar organic solvents on the kinetics of α-chymotrypsin-catalyzed hydrolyses. Biochemistry, 2, 836–843.

    CAS  Google Scholar 

  • Dabulis, K. and Klibanov, A.M. (1993) Dramatic enhancement of enzymatic activity in organic solvents by lyophotectants. Biotechnol. Bioeng., 41, 566–571.

    CAS  Google Scholar 

  • Dastoli, F.R. and Price, S. (1967) Catalysis by xanthine oxidase suspended in organic media. Arch. Biochem. Biophys., 118, 163–165.

    CAS  Google Scholar 

  • Dordick, J.S. (1989) Enzymatic catalysis in monophasic organic solvents. Enzyme Microb. Technol., 11, 194–211.

    CAS  Google Scholar 

  • Fitzpatrick, P.A., Steinmetz, A.C.U., Ringe, D. and Klibanov, A.M. (1993) Enzyme crystal structure in a neat organic solvent. Proc. Natl. Acad. Sci. USA, 90, 8653–8657.

    CAS  Google Scholar 

  • Gorman, L.A.S. and Dordick, J.S. (1992) Organic solvents strip water off enzymes. Biotechnol. Bioeng., 39, 392–397.

    CAS  Google Scholar 

  • Guinn, R.M., Skerker, P.S., Kavanaugh, P. and Clark, D.S. (1991a) Activity and flexibility of alcohol dehydrogenase in organic solvents. Biotechnol. Bioeng., 37, 303–308.

    CAS  Google Scholar 

  • Guinn, R.M., Blanch, H.W. and Clark, D.S. (1991b) Effect of a water-miscible organic solvent on the kinetic and structural properties of trypsin. Enzyme Microb. Technol., 13, 320–326.

    CAS  Google Scholar 

  • Halling, P.J. (1989) Organic liquids and biocatalysts: theory and practice. Trends Biotechnol., 7, 50–51.

    CAS  Google Scholar 

  • Halling, P.J. (1990a) High-affinity binding of water by proteins is similar in air and in organic solvents. Biochim. Biophys. Acta, 1040, 225–228.

    CAS  Google Scholar 

  • Halling, P.J. (1990b) Solvent selection for biocatalysis in mainly organic systems: predictions of effects on equilibrium position. Biotechnol. Bioeng., 35, 691–701.

    CAS  Google Scholar 

  • Halling, P.J. (1992) Salt hydrates for water activity control with biocatalysts in organic media. Biotechnol. Techniques, 6, 271–276.

    CAS  Google Scholar 

  • Halling, P.J. (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme Microb. Technol., 16, 178–206.

    CAS  Google Scholar 

  • Hartsough, D.S. and Merz, K.M. (1992) Protein flexibility in aqueous and nonaqueous solutions. J. Amer. Chem. Soc., 114, 10113–10116.

    CAS  Google Scholar 

  • Hirata, H., Higuchi, K. and Yamashina, T. (1990) Lipase-catalyzed transesterification in organic solvent: effects of water and solvent, thermal stability and some applications. J. Biotechnol., 14, 157–167.

    CAS  Google Scholar 

  • Jencks, W.P. (1987) Catalysis in chemistry and enzymology. Dover, New York.

    Google Scholar 

  • Kanerva, L.T. and Klibanov, A.M. (1989) Hammett analysis of enzyme action in organic solvents. J. Amer. Chem. Soc., 111, 6864–6865.

    CAS  Google Scholar 

  • Kasche, V., Michaelis, G. and Galunsky, B. (1991) Binding of organic solvent molecules influences the P1′-P2′ stereo- and sequence-specificity of α-chymotrypsin in kinetically controlled peptide synthesis. Biotechnol. Lett., 13, 75–80.

    CAS  Google Scholar 

  • Kawakami, K. and Nakahara, T. (1994) Importance of solute partitioning in biphasic oxidation of benzyl alcohol by free and immobilized whole cells of Pichia pastoris. Biotechnol. Bioeng., 43, 918–924.

    CAS  Google Scholar 

  • Khmelnitsky, Y.L., Belova, A.B., Levashov, A.V. and Mozhaev, V.V. (1991a) Relationship between surface hydrophilicity of a protein and its stability against denaturation by organic solvents. FEBS Lett., 284, 267–269.

    CAS  Google Scholar 

  • Khmelnitsky, Y.L., Mozhaev, V.V., Belova, A.B., Sergeeva, M.V. and Martinek, K. (1991b) Denaturation capacity: a new quantitative criterion for selection of organic solvents as reaction media in biocatalysis. Eur. J. Biochem., 198, 31–41.

    CAS  Google Scholar 

  • Kim, J. and Dordick, J.S. (1993) Pressure affects enzyme function in organic media. Biotechnol. Bioeng., 42, 772–776.

    CAS  Google Scholar 

  • Klibanov, A.M. (1989) Enzymatic catalysis in anhydrous organic solvents. Trends Biochem. Sci., 14, 141–144.

    CAS  Google Scholar 

  • Kuhl, P. and Halling, P.J. (1991) Salt hydrates buffer water activity during chymotrypsin-catalysed peptide synthesis. Biochim. Biophys. Acta, 1078, 326–328.

    CAS  Google Scholar 

  • Kuhl, P., Halling, P.J. and Jakubke, H.-D. (1990) Chymotrypsin suspended in organic solvents with salt hydrates is a good catalyst for peptide synthesis from mainly undissolved reactants. Tetrahedron Lett., 31, 5213–5216.

    CAS  Google Scholar 

  • Kvittingen, L., Sjursnes, B., Anthonsen, T. and Halling, P.J. (1992) Salt hydrates to buffer optimal water level during lipase catalysed synthesis in organic media: a practical procedure for organic chemists. Tetrahedron, 48, 2793–2802.

    CAS  Google Scholar 

  • Laane, C., Boeren, S., Vos, K. and Veeger, C. (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng., 30, 81–87.

    CAS  Google Scholar 

  • Liu, W.R., Langer, R.L. and Klibanov, A.M. (1991) Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol. Bioeng., 37, 177–184.

    CAS  Google Scholar 

  • Martins, J.F., de Sampaio, T.C., de Carvalho, LB. and Barreiros, S. (1994) Lipase catalyzed esterification of glycidol in nonaqueous solvents: solvent effects on enzymatic activity. Biotechnol. Bioeng., 44, 119–124.

    CAS  Google Scholar 

  • McMinn, J.H., Sowa, M.J., Charnick, S.B. and Paulaitis, M.E. (1993) The hydration of proteins in nearly anhydrous organic solvent suspensions. Biopolymers, 33, 1213–1224.

    CAS  Google Scholar 

  • Mozhaev, V.V., Khmelnitsky, Y.L., Sergeeva, M.V., Belova, A.B., Klyachko, N.L., Levashov, A.V. and Martinek, K. (1989) Catalytic activity and denaturation of enzymes in water/organic cosolvent mixtures, α-chymotrypsin and laccase in mixed water/alcohol, water/glycol and water/formamide solvents. Eur. J. Biochem., 184, 597–602.

    CAS  Google Scholar 

  • Murcus, Y. (1985) Ion solvation. John Wiley & Sons Ltd, Chichester.

    Google Scholar 

  • Narayan, V.S. and Klibanov, A.M. (1993) Are water-immiscibility and apolarity of the solvent relevant to enzyme efficiency? Biotechnol. Bioeng., 41, 390–393.

    CAS  Google Scholar 

  • Ottolina, G., Gianinetti, F., Riva, S. and Carrea, G. (1994) Solvent configuration influences enzyme activity in organic media. J. Chem. Soc., Chem. Commun., 535–536.

    Google Scholar 

  • Reimann, A., Robb, D.A. and Halling, P.J. (1994) Solvation of CBZ-amino acid nitrophenyl esters in organic media and the kinetics of their transesterification by subtilisin. Biotechnol. Bioeng., 43, 1081–1086.

    CAS  Google Scholar 

  • Reslow, M., Adlercreutz, P. and Mattiasson, B. (1987) Organic solvents for bioorganic synthesis 1. Optimization of parameters for a chymotrypsin catalyzed process. Appl. Microbiol. Biotechnol., 26, 1–8.

    CAS  Google Scholar 

  • Rupley, J.A., Gratton, E. and Careri, G. (1983) Water and globular proteins. Trends Biochem. Sci., 8, 18–22.

    CAS  Google Scholar 

  • Russell, A.J. and Klibanov, A.M. (1988) Inhibitor-induced enzyme activation in organic solvents. J. Biol. Chem., 263, 11624–11626.

    CAS  Google Scholar 

  • Russell, A.J., Chatterjee, S., Rapanovich, I. and Goodwin, J.G. (1992) Mechanistic enzymology in anhydrous organic solvents. In Biomolecules in Organic Solvents (eds A. Gómez-Puyou, A. Darszon and M.T. Gómez-Puyou), CRC Press, London, pp. 91–111.

    Google Scholar 

  • Ryu, K. and Dordick, J.S. (1989) Free energy relationships of substrate and solvent hydrophobicities with enzymatic catalysis in organic media. J. Amer. Chem. Soc., 111, 8026–8027.

    CAS  Google Scholar 

  • Ryu, K. and Dordick, J.S. (1992a) How do organic solvents affect peroxidase structure and function? Biochemistry, 31, 2588–2598.

    CAS  Google Scholar 

  • Ryu, K. and Dordick, J.S. (1992b) Quantitative and predictive correlations for peroxidase catalysis in organic media. Biotechnol. Techniques, 6, 277–282.

    CAS  Google Scholar 

  • Schneider, L.V. (1991) A three-dimensional solubility parameter approach to nonaqueous enzymology. Biotechnol. Bioeng., 37, 627–638.

    CAS  Google Scholar 

  • Secundo, F., Riva, S. and Carrea, G. (1992) Effects of medium and of reaction conditions on the enantioselectivity of lipases in organic solvents and possible rationales. Tetrahedron: Asymmetry, 3, 267–280.

    CAS  Google Scholar 

  • Ståhl, M., Jeppsson-Wistrand, IL, Månsson, M.-O. and Mosbach, K. (1991) Induced stereoselectivity and substrate selectivity of bio-imprinted α-chymotrypsin in anhydrous organic media. J. Amer. Chem. Soc., 113, 9366–9368.

    Google Scholar 

  • Stevenson, D.E. and Storer, A.C. (1991) Papain in organic solvents: determination of conditions suitable for biocatalysis and the effect on substrate specificity and inhibition. Biotechnol. Bioeng., 37, 519–527.

    CAS  Google Scholar 

  • Svensson, I., Wehtje, E., Adlercreutz, P. and Mattiasson, B. (1994) Effects of water activity on reaction rates and equilibrium positions in enzymatic esterifications. Biotechnol. Bioeng., 44, 549–556.

    CAS  Google Scholar 

  • Ulbrich-Hofmann, R. and Selisko, B. (1993) Soluble and immobilized enzymes in water-miscible organic solvents: glucoamylase and invertase. Enzyme Microb. Technol., 15, 33–41.

    CAS  Google Scholar 

  • Valivety, R.H., Johnston, G.A., Suckling, C.J. and Halling, P.J. (1991) Solvent effects on biocatalysis in organic systems: equilibrium position and rates of lipase catalyzed esterification. Biotechnol. Bioeng., 38, 1137–1143.

    CAS  Google Scholar 

  • Valivety, R.H., Halling, P.J. and Macrae, A.R. (1992a) Rhizomucor miehei lipase remains highly active at water activity below 0.0001. FEBS Lett., 301, 258–260.

    CAS  Google Scholar 

  • Valivety, R.H., Halling, P.J., Peilow, A.D. and Macrae, A.R. (1992b) Lipases from different sources vary widely in dependence of catalytic activity on water activity. Biochim. Biophys. Acta, 1122, 143–146.

    CAS  Google Scholar 

  • Valivety, R.H., Halling, P.J. and Macrae, A.R. (1992c) Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochim. Biophys. Acta, 1118, 218–222.

    CAS  Google Scholar 

  • Vazquez-Duhalt, R., Fedorak, P.M. and Westlake, D.W.S. (1992) Role of enzyme hydrophobicity in biocatalysis in organic solvents. Enzyme Microb. Technol., 45, 837–841.

    Google Scholar 

  • van Erp, S.H.M., Kamenskaya, E.O. and Khmelnitsky, Y.L. (1991) The effect of water content and nature of organic solvent on enzyme activity in low-water media. A quantitative description. Eur. J. Biochem., 202, 379–384.

    Google Scholar 

  • Volkin, D.B., Staubli, A., Langer, R. and Klibanov, A.M. (1991) Enzyme thermoinactivation in anhydrous organic solvents. Biotechnol. Bioeng., 37, 843–853.

    CAS  Google Scholar 

  • Vulfson, E.N., Sarney, D.B. and Law, B.A. (1991) Enhancement of subtilisin-catalysed inter-esterification in organic solvents by ultrasound irradiation. Enzyme Microb. Technol., 13, 123–126.

    CAS  Google Scholar 

  • Wangikar, P.P., Graycar, T.R, Estell, D.A., Clark, D.S. and Dordick, J.S. (1993) Protein and solvent engineering of subtilisin BPN′ in nearly anhydrous organic media. J. Amer. Chem. Soc., 115, 12231–12237.

    CAS  Google Scholar 

  • Wescott, C.R. and Klibanov, A.M. (1994) The solvent dependence of enzyme specificity. Biochim. Biophys. Acta, 1206, 1–9.

    CAS  Google Scholar 

  • West, J.B., Hennen, W.J., Lalonde, J.L., Bibbs, J., Zhong, Z., Meyer, E.F. and Wong, C.-H. (1990) Enzymes as synthetic catalysts: mechanistic and active-site considerations of natural and modified chymotrypsin. J. Amer. Chem. Soc., 112, 5313–5320.

    CAS  Google Scholar 

  • Wheeler, C.J. and Croteau, R. (1986) Terpene cyclase catalysis in organic solvent/minimal water media: demonstration and optimization of (+)-α-pinene cyclase activity. Arch. Biochem. Biophys., 248, 429–34.

    CAS  Google Scholar 

  • Wu, J. and Gorenstein, D.G. (1993) Structure and dynamics of cytochrome c in nonaqueous solvents by 2D NH-exchange NMR spectroscopy. J. Amer. Chem. Soc., 115, 6843–6850.

    CAS  Google Scholar 

  • Xu, Z.-F., Affleck, R., Wangikar, P., Suzawa, V., Dordick, J.S. and Clark, D.S. (1994) Transition state stabilization of subtilisins in organic media. Biotechnol. Bioeng., 43, 515–520.

    CAS  Google Scholar 

  • Yang, Z. and Robb, D.A. (1991) Enzyme activity in organic media. Biochem. Soc Trans., 20, 13S.

    Google Scholar 

  • Yang, Z. and Robb, D.A. (1993) Comparison of tyrosinase activity and stability in aqueous and nearly nonaqueous environments. Enzyme Microb. Technol., 15, 1030–1036.

    CAS  Google Scholar 

  • Yang, Z. and Robb, D.A. (1994) Partition coefficients of substrates and products and solvent selection for biocatalysis under nearly anhydrous conditions. Biotechnol. Bioeng., 43, 365–370.

    CAS  Google Scholar 

  • Yang, Z., Robb, D.A. and Halling, P.J. (1992) Variation of tyrosinase activity with solvent at a constant water activity, in Biocatalysis in nonconventional media (eds J. Tramper et al.). Elsevier, Amsterdam, pp. 585–592.

    Google Scholar 

  • Yang, Z., Zacherl, D. and Russell, A.J. (1993) pH dependence of subtilisin dispersed in organic solvents. J. Amer. Chem. Soc., 115, 12251–12257.

    CAS  Google Scholar 

  • Yennawar, H.P., Yennawar, N.H. and Farber, G.K. (1994) X-ray crystal structure of γ-chymotrypsin in hexane. Biochemistry, 33, 7326–7336.

    CAS  Google Scholar 

  • Yennawar, H.P, Yennawar, N.H. and Farber, G.K. (1995) A structural explanation for enzyme memory in nonaqueous solvents. J. Amer. Chem. Soc., 111, 577–585.

    Google Scholar 

  • Zaks, A. and Klibanov, A.M. (1984) Enzymatic catalysis in organic media at 100°C. Science, 224, 1249–1251.

    CAS  Google Scholar 

  • Zaks, A. and Klibanov, A.M. (1985) Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA, 82, 3192–3196.

    CAS  Google Scholar 

  • Zaks, A. and Klibanov, A.M. (1988a) Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem., 263, 3194–3201.

    CAS  Google Scholar 

  • Zaks, A. and Klibanov, A.M. (1988b) The effect of water on enzyme action in organic media. J. Biol. Chem., 263, 8017–8021.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yang, Z., Russell, A.J. (1996). Fundamentals of non-aqueous enzymology. In: Koskinen, A.M.P., Klibanov, A.M. (eds) Enzymatic Reactions in Organic Media. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0611-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0611-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4269-7

  • Online ISBN: 978-94-011-0611-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics