Skip to main content
  • 204 Accesses

Abstract

All crystalline materials may be categorized into 32 crystallographic point groups. Of the 21 classes that lack a centre of symmetry, 20 produce an electric dipole (i.e. polarization) when mechanically stressed. These materials are termed piezoelectric, the lack of centrosymmetry being a necessary condition to allow movement of the positive and negative ions in order to produce a dipole. Ten of these classes possess a permanent dipole and will respond to changes in temperature as well as stress. These are defined as pyroelectric. These classes can be subdivided further into ferroelectric crystals, in which the dipole moments of the individual crystalline units can be reversed by application of an electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brain, K.R. (1924) Proc. Phys. Soc. Lond., 36, 81.

    Google Scholar 

  2. Martin, A.J.P. (1941) Proc. Phys. Soc., 53, 186.

    Article  Google Scholar 

  3. Fukada, E. and Yasuda, I. (1959) Prog. Polym. Phys. Japan, 2, 101.

    Google Scholar 

  4. Fukada, E. (1968) Ultrasonics, 6, 229.

    Article  CAS  Google Scholar 

  5. Fukada, E. and Ando, Y. (1986) Int. J. Biol. Macromol., 8, 36.

    Article  Google Scholar 

  6. Kawai, H. (1969) Jap. J. Appl. Phys., 8, 975.

    Article  CAS  Google Scholar 

  7. Yamada, T., Ueda, T. and Kitayama, T. (1981) J. Appl. Phys., 52, 948.

    Article  CAS  Google Scholar 

  8. Lando, J.B. and Doll, W.W. (1968) J. MacromoL Sci. (Phys.), B2, 205.

    Google Scholar 

  9. Mather, S.C., Scheinbeim, J.I. and Newman, B.A. (1985) J. Appl. Phys., 56, 2419.

    Article  Google Scholar 

  10. Miyata, S., Yoshikawa, M., Tasaka, S. and Ko, M. (1980) Polym. J., 12, 857.

    Article  CAS  Google Scholar 

  11. Brydson, J. A. (1982) Plastics Materials, Butterworths, London.

    Google Scholar 

  12. Young, R.J. (1985) Introduction to Polymers, Chapman & Hall, London.

    Google Scholar 

  13. Lovinger, A.J. (1983) Science, 220, 1115.

    Article  CAS  Google Scholar 

  14. Bamji, S.S., Kao, K.J. and Perlman, M.M. (1980) J. Polym. Sci. (Phys), 18, 1945.

    Article  CAS  Google Scholar 

  15. Dukert, A.A. (1962) Society of Plastics Engineers 18th Annual National Technical Conference, Pittsburgh.

    Google Scholar 

  16. Gebauer, P. (1975) Kunstoffe, 65, 356.

    CAS  Google Scholar 

  17. Stallings, J.P. and Howell, S.G. (1971) Polym. Sci. Engng., 11, 507.

    Article  CAS  Google Scholar 

  18. Prest, W.M. and Luca, D.J. (1978) J. Appl. Phys., 49, 5042.

    Article  CAS  Google Scholar 

  19. Sawyer, C.B. and Tower, C.H. (1930) Phys. Rev., 35, 269.

    Article  CAS  Google Scholar 

  20. Furukawa, T. and Johnson, G.E. (1981) Appl. Phys. Lett., 38, 1027.

    Article  CAS  Google Scholar 

  21. Tajitsu, Y., Masuda, T. and Furukawa, T. (1987) Jap. J. Appl. Phys., 26, 1749.

    Article  CAS  Google Scholar 

  22. Scaife, B.K.P. (1971) Complex Permittivity, Hodder & Stoughton, London, Chap. 3.

    Google Scholar 

  23. Higashihata, Y., Sako, J. and Yagi, T. (1981) Ferroelectrics, 32, 85.

    Article  CAS  Google Scholar 

  24. Humphrey, K.J., Garner, G.M. and Whatmore, R.W. (1987) Ferroelectrics, 76, 383.

    Article  CAS  Google Scholar 

  25. Yamada, T. and Kitayama, T. (1981) J. Appl. Phys., 52, 6859.

    Article  CAS  Google Scholar 

  26. Berlincourt, D.A., Curran, D.R. and Jaffe, H. (1964) In Physical Acoustics, Principles and Methods (ed. W.P. Mason) Academic Press, New York.

    Google Scholar 

  27. Kepler, R.G. and Anderson, R.A. (1978) J. Appl. Phys., 49, 4490.

    Article  CAS  Google Scholar 

  28. Humphrey, K.J., Garner, G.M., Shorrocks, N.M. and Whatmore, R.W. (1986) in Proceedings of the 6th IEEE International Symposium on Applied Ferroelectrics, 1986, p. 543.

    Book  Google Scholar 

  29. Tancrell, R.H., Wilson, D.T. and Rickett, D. (1985) in Proceedings of IEEE Ultrasonic Symposium, 1985, p. 624.

    Google Scholar 

  30. Humphrey, K.J., Garner, G.M., Goosey, M.T. et al. (1988) in Proceedings of the 1st International Conference on Electrical, Optical and Acoustic Properties of Polymers, RAPRA, London, p. 1.

    Google Scholar 

  31. Yamada, T. (1982) J. Appl. Phys., 53, 6335.

    Article  CAS  Google Scholar 

  32. IRE Standards on Piezoelectric Crystals (1961) Proc. IRE, 49, 1161.

    Article  Google Scholar 

  33. Ohigashi, H. (1976) J. Appl. Phys., 47, 949.

    Article  CAS  Google Scholar 

  34. Murayama, N. and Obara, H. (1983) J. Appl. Phys., 22, 3.

    Google Scholar 

  35. Whatmore, R.W. (1986) Rep. Prog. Phys., 49, 1335.

    Article  CAS  Google Scholar 

  36. Porter, S.G. (1981) Ferroelectrics, 33, 193.

    Article  CAS  Google Scholar 

  37. Whatmore, R.W. and Ainger, F.W. (1983) Proc. SPIE, 395, 261.

    Article  CAS  Google Scholar 

  38. Yamazaki, H., Ohwaki, J., Yamada, T. and Kitayama, T. (1981) Appl. Phys. Lett., 39, 772.

    Article  CAS  Google Scholar 

  39. Garner, G.M. (1975) Allen Clark Research Ann. Rev., 62.

    Google Scholar 

  40. Choy, C.L., Chen, F.C. and Luk, W.H. (1980) J. Polym. Sci. Polym. Phys., 18, 1187.

    CAS  Google Scholar 

  41. Humphreys, J., Lewis, E.L.V., Ward, I.M. et al. (1988) J. Polym. Sci. Polym. Phys., 26, 141.

    Article  CAS  Google Scholar 

  42. Lerch, R. (1981) J. Acoust. Soc. Am., 67, 1229.

    Article  Google Scholar 

  43. Schewe, H. (1982) Proceedings of IEEE Ultrasonics Symposium, 519.

    Google Scholar 

  44. Wada, Y. and Nakamura, K. (1971) J. Polym. Sci., A29, 161.

    Google Scholar 

  45. Bergman, J.G., McFee, J.H. and Crane, G.R. (1971) Appl. Phys. Lett., 18, 203.

    Article  CAS  Google Scholar 

  46. Tamura, M., Yamaguchi, T., Oyaba, T. and Yoshimi, T. (1975) J. Audio Engng. Soc., 23, 21.

    Google Scholar 

  47. Lerch, R. and Sessler, G.M. (1980) J. Acoust. Soc. Am., 76, 1379.

    Article  Google Scholar 

  48. Garner, G.M. (1977) Systems Technol., 27, 22.

    Google Scholar 

  49. Micheron, F. and Lemonon, C. (1978) J. Acoust. Soc. Am., 64, 1720.

    Article  CAS  Google Scholar 

  50. Sullivan, T.D. and Powers, J.M. (1978) J. Acoust. Soc. Am., 63, 1396.

    Article  CAS  Google Scholar 

  51. Holden, A.J., Parsons, A.D. and Wilson, A.E.J. (1983) J. Acoust. Soc. Am., 73, 1858.

    Article  Google Scholar 

  52. Ricketts, D. (1978) J. Acoust. Soc. Am., 64, 555.

    Article  Google Scholar 

  53. Pearman, G.T., Hokanson, J.L. and Meeker, T.R. (1980) Ferroelectrics, 28, 311.

    Article  CAS  Google Scholar 

  54. Toda, M. and Osaka, S. (1979) Proc. IEEE, 67, 1171.

    Article  Google Scholar 

  55. Toda, M. (1981) Ferroelectrics, 32, 127.

    Article  CAS  Google Scholar 

  56. Starita, A., Basta, F., Carbone, B. et al. (1985) Med. Biol. Engng. Comput., 23 (Suppl. Part 1), 420.

    Google Scholar 

  57. Long Shen, Y., De Rossi, D., Dario, P. and Galletti, P.M. (1986) Life Support Systems, 4, 239.

    Google Scholar 

  58. Vematsu, Y. and Suzuki, M. (1980) in Proceedings of the 10th ISIR, p. 571.

    Google Scholar 

  59. Fukada, E. (1981) in Mechanisms of Growth Control (ed. R.O. Becker and C.C. Thomas), Springfield.

    Google Scholar 

  60. Ficat, F.F., Durroux, R., Faruan, M.J. et al. (1982) in Current Advances in Skeletogenesis (ed. M. Silberman and M.C. Slerkin), Excerpta Medica, Amsterdam.

    Google Scholar 

  61. Glass, A.M., McFee, J.H. and Bergman, J.G. J. Appl. Phys., 42, 5219.

    Google Scholar 

  62. Pfister, G., Abkowitz, M. and Crystal, R.G. (1973) J. Appl. Phys., 44, 2064.

    Article  Google Scholar 

  63. Burkard, H. and Pfister, G. (1974) J. Appl. Phys., 45, 3360.

    Article  Google Scholar 

  64. Southgate, P.D. (1976) Appl. Phys. Lett., 28, 250.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Garner, G.M., Humphrey, K.J. (1995). Ferroelectric polymers. In: Chilton, J.A., Goosey, M.T. (eds) Special Polymers for Electronics and Optoelectronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0569-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0569-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4252-9

  • Online ISBN: 978-94-011-0569-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics