Skip to main content

Abstract

Interplexiform cells, often characterized as the ‘sixth’ form of retinal neuron, are multipolar cells with complex lateral arbors in both the outer and inner plexiform layers. The formal classifications of all other retinal neurons are likewise based solely on light microscopic form and this has also been adopted here. To my knowledge, the first published examples of interplexiform cells (likely to be glycinergic) were described by Ramón y Cajal (1892) in the retinas of perciform fishes:‘. . . I have found cells whose morphological characteristics require us to regard them as a separate class of retinal elements.’ Although Cajal leaned towards identifying them as a cone bipolar cell, he clearly understood their special and difficult morphologies. And as the densities of glycinergic interplexiform cells are so low (Marc and Lam, 1981; Marc, 1982), they have been detected but infrequently by Golgi methods (Wagner, 1976; Kalloniatis and Marc, 1990) and then usually as fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldridge, W.H. and Ball, A.K. (1993) A new type of interplexiform cell in the goldfish retina is PNMT immunoreactive. Neuroreport ,4, 1015– 18.

    Article  PubMed  CAS  Google Scholar 

  • Ball, A.K. and Tutton, D.A. (1990) Contacts between S1 amacrine cells and ‘I1’ interplexiform cells in the goldfish retina. Investigative Ophthalmology and Visual Science Supplement ,27 332.

    Google Scholar 

  • Besharse, J.C. and Iuvone, P.M. (1992) Is dopamine a light-adaptive or dark-adaptive modulator in retina? Neurochemistry International ,20, 193–9.

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield, S.A. (1990) Two types of orientation-sensitive responses of amacrine cells in the mammalian retina. Nature ,350, 347–50.

    Article  Google Scholar 

  • Boatright, J.H., Hoel, M.J. and Iuvone, P.M. (1989) Stimulation of endogenous dopamine release and metabolism in amphibian retina by light-and K+-evoked depolarization. Brain Research ,482, 164–8.

    Article  PubMed  CAS  Google Scholar 

  • Boatright, J.H., Gordon, J.R. and Iuvone, P.M. (1992) 2-Amino-4-phosphonobutyric acid (AP-4) blocks light-evoked dopamine release in frog retina. Investigative Ophthalmology and Visual Science Supplement ,33, 1405.

    Google Scholar 

  • Boycott, B.B., Dowling, J.E., Fisher, S.K. et al. (1975) Interplexiform cells of the mammalian retina and their comparison with catechol-amine-containing retinal cells. Proceedings of the Royal Society of London B ,191, 353–68.

    Article  CAS  Google Scholar 

  • Brunken, W.J., Witkovsky, P. and Karten, H.J. (1986) Retinal neurochemistry of three elasmobranch species: an immunohistochemical approach. Journal of Comparative Neurology ,243, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Burnside, B., Wang, E., Pagh-Roehl, K. and Rey, H. (1993) Retinomotor movements in isolated teleost cone inner-outer segment preparations (CIS-COS): effects of light, dark and dopamine. Experimental Eye Research ,57, 709–22.

    Article  PubMed  CAS  Google Scholar 

  • Cajal, S.R.Y. (1972) The Structure of the Retina (Compiled and translated by S.A. Thorpe and M. Glickson), C.C. Thomas, Springfield, IL.

    Google Scholar 

  • Cajal, S.R.Y. (1892) La retine des vertebres. La Cellule ,9, 121–246.

    Google Scholar 

  • Carroll, R.L. (1988) Vertebrate Paleontology and Evolution. W.H. Freeman, New York, 698 pp.

    Google Scholar 

  • Critz, S.D. and Marc, R.E. (1992) Glutamate antagonists that block hyperpolarizing bipolar cells increase the release of dopamine from turtle retina. Visual Neuroscience ,9, 271–8.

    Article  PubMed  CAS  Google Scholar 

  • Dacey, D.M. (1989) Axon-bearing amacrine cells of the macaque monkey retina. Journal of Comparative Neurology ,284, 275–93.

    Article  PubMed  CAS  Google Scholar 

  • Dacey, D.M. (1990) The dopaminergic amacrine cell. Journal of Comparative Neurology ,301, 461–89.

    Article  PubMed  CAS  Google Scholar 

  • Dearry, A. and Burnside, B. (1989) Regulation of cell motility in teleost retinal photoreceptors and pigment epithelium by dopaminergic D2 receptors, in Extracellular and Intracellular Messengers in the Vertebrate Retina (eds D. Redburn and H. Pasantes-Morales), Alan R. Liss, New York, pp.229–56.

    Google Scholar 

  • de Miguel, E. and Wagner, H-J. (1990) Tyrosine hydroxylase immunoreactive interplexiform cells in the lamprey retina. Neuroscience Letters ,113, 151–5.

    Article  PubMed  Google Scholar 

  • Djamgoz, M.B.A. and Ruddock, K.H. (1979) Effects of picrotoxin and strychnine on fish retinal S-potentials: evidence for inhibitory control of depolarizing responses. Neuroscience Letters ,12, 329–34.

    Article  PubMed  CAS  Google Scholar 

  • Djamgoz, M.B.A. and Wagner, H-J. (1992) Localization and function of dopamine in the adult vertebrate retina. Neurochemistry International ,20, 139–91.

    Article  PubMed  CAS  Google Scholar 

  • Djamgoz, M.B.A., Usai, C. and Vallerga, S. (1991) An interplexiform cell in the goldfish retina: light-evoked response pattern and intracellular staining with horseradish peroxidase. Cell Tissue Research ,264, 111–16.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R.H., Wagner, H-J., Zaunreiter, M. et al. (1992) The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina. Visual Neuroscience ,9, 335–43.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, J.E. (1991) Retinal neuromodulation: the role of dopamine. Visual Neuroscience, 7 ,87–97.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, J.E. and Ehinger, B. (1975) Synaptic organization of the amine-containing interplexiform cells of the goldfish and Cebus monkey retinas. Science ,188, 270–73.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, J.E. and Ehinger, B. (1978) The interplexiform cell system I. Synapses of the dopaminergic neurons of the goldfish retina. Proceedings of the Royal Society of London B ,201, 7–26.

    Article  CAS  Google Scholar 

  • Ehinger, B. and Dowling, J.E. (1987) Retinal neurocircuitry and transmission, in Handbook of Clinical Neuroanatomy. V5. Integrated Systems of the CNS ,Part I (eds A. Björklund, T. Hökfelt and L.W. Swanson), Elsevier, Amsterdam, pp.389–446.

    Google Scholar 

  • Ehinger, B. and Falck, B. (1969) Adrenergic retinal neurons of some new world monkeys. Zeitsch-rift fur Zellforschung ,100, 364–75.

    Article  CAS  Google Scholar 

  • Ehinger, B., Falck, B. and Laties, A.M. (1969) Adrenergic neurons in teleost retina. Zeitschrift fur Zellforschung ,97, 285–97.

    Article  CAS  Google Scholar 

  • Famiglietti, E.V. Jr (1992a) Polyaxonal amacrine cells of rabbit retina: morphology of PA1 cells. Journal of Comparative Neurology ,316, 391–405.

    Article  PubMed  CAS  Google Scholar 

  • Famiglietti, E.V. Jr (1992b) Polyaxonal amacrine cells of rabbit retina: PA2, PA3, and PA4 cells: light and electron microscopic studies with a functional interpretation. Journal of Comparative Neurology ,316, 422–46.

    Article  PubMed  CAS  Google Scholar 

  • Favard, C., Simon, A., Vigny, A. and Nguyen-Legros, J. (1990) Ultrastructural evidence for a close relationship between dopamine cell processes and blood capillary walls in Macaca monkey and rat retina. Brain Research ,523, 127–33.

    Article  PubMed  CAS  Google Scholar 

  • Frederick, J.M., Rayborn, M.E., Laties, A.M. et al. (1982) Dopaminergic neurons in the human retina. Journal of Comparative Neurology ,210, 65–79.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel, R., Zhu, B. and Straznicky, C. (1992) Synaptic contacts of tyrosine hydroxylase-immunoreactive elements in the inner plexi-form layer of the retina of Bufo marinus. Cell Tissue Research ,276, 525–34.

    Google Scholar 

  • Gallego, A. (1971) Horizontal and amacrine cells in the mammal’s retina. Vision Research ,3, 33–50.

    Article  PubMed  Google Scholar 

  • Hamasaki, D.I., Trattler, W.B. and Hajek, A.S. (1986) Light on suppresses and light off enhances the release of dopamine from the cat’s retina. Neuroscience Letters ,68, 112–66.

    Article  PubMed  CAS  Google Scholar 

  • Hampson, E.C.G., Vaney, D.I. and Weiler, R. (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. Journal of Neuroscience ,12, 4911–22.

    PubMed  CAS  Google Scholar 

  • Hashimoto, Y., Abe, M. and Inokuchi, M. (1980) Identification of the interplexiform cell in the dace retina by dye injection method. Brain Research ,197, 331–40.

    Article  PubMed  CAS  Google Scholar 

  • Hokoc, J.N. and Mariani, A.P. (1988a) Synapses from bipolar cells onto dopaminergic amacrine cells in cat and rabbit retinas. Brain Research ,461, 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Hokoc, J.N. and Mariani, A.P. (1988b) Tyrosine hydroxylase immunoreactivity in the rhesus monkey reveals synapses from bipolar cells to dopaminergic amacrine cells. Journal of Neuro-science ,7, 2785–93.

    Google Scholar 

  • Kalloniatis, M.K. and Fletcher, E.L. (1993) Immunocytochemical localization of the amino acid neurotransmitters in the chicken retina. Journal of Comparative Neurology ,336, 174–93.

    Article  PubMed  CAS  Google Scholar 

  • Kalloniatis, M. and Marc, R.E. (1990) Interplexi-form cells of the goldfish retina. Journal of Comparative Neurology ,297, 340–58.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch, M. and Wagner, H-J. (1989) Release pattern of endogenous dopamine in teleost retinae during light adaptation and pharmacological stimulation. Vision Research ,29, 147–54.

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt, J. and Yazulla, S. (1934) Uptake of [3H]-glycine in the outer plexiform layer of the retina of the toad, Bufo marinus. Journal of Comparative Neurology ,230, 352–60.

    Article  Google Scholar 

  • Knapp, A.G. and Dowling, J.E. (1987) Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells. Nature ,325, 437–9.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H. and West, R.W. (1977) Synaptic connections of the interplexiform cell in the retina of the cat. Journal of Neurocytology ,6, 155–70.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., Linberg, K.A. and Fisher, S.K. (1992) Neurons of the human retina: A Golgi study. Journal of Comparative Neurology ,318, 147–87.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., Cline, C., Wang, H.H. and Brecha, N. (1987) Distribution and morphology of dopaminergic amacrine cells in the retina of the turtle (Pseudemys scripta elegans). Journal of Neurocytology ,16, 577–88.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., Cuenca, N., Wang, H.-H. and Dekorver, L. (1990) The synaptic organization of the dopaminergic amacrine cell in the cat retina. Journal of Neurocytology ,19, 343–66.

    Article  PubMed  CAS  Google Scholar 

  • Lasater, E.M. (1987) Retinal horizontal cell gap junctional conductance is modulated by dopamine through a cyclic-AMP dependent protein kinase. Proceedings of the National Academy of Sciences, USA ,84, 7319–23.

    Article  CAS  Google Scholar 

  • Lasater, E.M. and Dowling, J.E. (1985) Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proceedings of the National Academy of Sciences, USA ,82, 3025–9.

    Article  CAS  Google Scholar 

  • Maguire, G., Lukasiewicz, P. and Werblin, F. (1990) Synaptic and voltage-gated currents in interplexiform cells of the tiger salamander retina. Journal of General Physiology ,95, 755–70.

    Article  PubMed  CAS  Google Scholar 

  • Mangel, S.C. and Dowling, J.E. (1985) Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science ,229, 1107–9.

    Article  PubMed  CAS  Google Scholar 

  • Mangel, S.C. and Dowling, J.E. (1987) The interplexiform-horizontal cell system of the fish retina: effects of dopamine, light stimulation and time in the dark. Proceedings of the Royal Society of London B ,231, 91–121.

    Article  CAS  Google Scholar 

  • Marc, R.E. (1982) Spatial organization of neurochemically classified interneurons in the goldfish retina. I. Local patterns. Vision Research ,22, 589–608.

    Article  PubMed  CAS  Google Scholar 

  • Marc, R.E. (1985) The role of glycine in retinal circuitry, in Retinal Transmitters and Modulators: Models for the Brain ,Vol. 1 (ed. W. Morgan), CRC Press, Boca Raton, FL, pp.119–58.

    Google Scholar 

  • Marc, R.E. (1989) Evolution of retinal circuits, in Neural Mechanisms of Behavior ,Proceedings of the 2nd International Congress of Neuroethology (eds J. Erber, R. Menzel, H.-J. Pfluger and D. Todt), Thieme Medical Publishers, New York, pp.146–7.

    Google Scholar 

  • Marc, R.E. (1992) The structure of GABAergic circuits in ectotherm retinas, in GABA in the Retina and Central Visual System (eds R. Mize, R.E. Marc, and A. Sillito), Elsevier, Amsterdam, pp. 61–92.

    Chapter  Google Scholar 

  • Marc, R.E. and Lam, D.M.K. (1981) Glycinergic pathways in the goldfish retina. Journal of Neuroscience ,1, 152–65.

    PubMed  CAS  Google Scholar 

  • Marc, R.E. and Liu, W.-L. (1984) Horizontal cell synapses onto glycine-accumulating interplexiform cells. Nature ,311, 266–9.

    Article  Google Scholar 

  • Marc, R.E., Liu, W.-L.S., Scholz, K. and Muller, J.F. (1988) Serotonergic pathways in the goldfish retina. Journal of Neuroscience ,8, 3427–50.

    PubMed  CAS  Google Scholar 

  • Mariani, A.P. (1982) Association amacrine cells could mediate directional selectivity in pigeon retina. Nature ,298, 654–55.

    Article  PubMed  CAS  Google Scholar 

  • Mariani, A.P. and Hokoc, J.N. (1988) Two types of tyrosine hydroxylase immunoreactive amacrine cells in the rhesus monkey retina. Journal of Comparative Neurology ,276, 81–91.

    Article  PubMed  CAS  Google Scholar 

  • Marshak, D.W. and Dowling, J.E. (1987) Synapses of the cone horizontal cell axons of the goldfish retina. Journal of Comparative Neurology ,256, 430–43.

    Article  PubMed  CAS  Google Scholar 

  • McCormack, C.A. and Burnside, B. (1992) A role for endogenous dopamine in circadian regulation of retinal cone movement. Experimental Eye Research ,55, 511–20.

    Article  PubMed  CAS  Google Scholar 

  • McMahon, D.G., Knapp, A.G. and Dowling, J.E. (1989) Horizontal cell gap junctions: single-channel conductance and modulation by dopamine. Proceedings of the National Academy of Sciences, USA ,86, 7639–43.

    Article  CAS  Google Scholar 

  • Muller, J.F. and Marc, R.E. (1990) GABA-ergic and glycinergic pathways in the inner plexiform layer of the goldfish retina. Journal of Comparative Neurology ,291, 281–304.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, M., Ohtsu, K. and Ohtsuka, T. (1972) Effects of chemicals on receptors and horizontal cells in the retina. Journal of Physiology ,227, 899–913.

    PubMed  CAS  Google Scholar 

  • Nakamura, Y., McGuire, B.A. and Sterling, P. (1980) Interplexiform cell in cat retina: identification by uptake of gamma-(3H)-aminobutyric acid serial reconstruction. Proceedings of the National Academy of Sciences, USA, 77,658–61.

    Article  CAS  Google Scholar 

  • Negishi, K. and Drujan, B.D. (1979) Effects of catecholamines and related compounds on the horizontal cells of the fish retina. Journal of Neuroscience Research ,4, 311–34.

    Article  PubMed  CAS  Google Scholar 

  • Negishi, K., Teranishi, T. and Kato, S. (1990) The dopamine system of the teleost fish retina. Progress in Retinal Research, 9 ,1–48.

    Article  CAS  Google Scholar 

  • Nelson, J.S. (1984) Fishes of the World. Wiley, New York.

    Google Scholar 

  • Ngyuen-LeGros, J., Berger, B., Vigny, A. and Alvarez, C. (1981) Tyrosine hydroxylase-like immunoreactive interplexiform cells in the rat retina. Neuroscience Letters, 27,255–9.

    Article  Google Scholar 

  • O’Connor, P., Zucker, C.L. and Dowling, J.E. (1987) Regulation of dopamine release from interplexiform cell processes in the outer plexiform layer of the carp retina. Journal of Neuro-chemistry ,49, 916–20.

    Google Scholar 

  • O’Connor, P., Dorisom, S.J., Watling, K.J. and Dowling, J.E. (1988) Factors affecting the release of [3H] dopamine from perfused carp retina. Journal of Neuroscience ,6, 1857–65.

    Google Scholar 

  • Oyster, C.W., Takahashi, E.S., Cilluffo, M. and Brecha, N. (1985) Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina. Proceedings of the National Academy of Sciences, USA ,82, 6335–9.

    Article  CAS  Google Scholar 

  • Oyster, C.W., Takahashi, E.S. and Brecha, N. (1988) Morphology of retinal dopaminergic neurons, in Dopaminergic Mechanisms in Vision ,Alan R. Liss, New York, pp. 19–33.

    Google Scholar 

  • Pfeiffer-Linn, C. and Lasater, E.M. (1993) Dopamine modulates in a differential fashion T-and L-type calcium currents in bass retinal horizontal cells. Journal of General Physiology ,102, 277– 94.

    Article  PubMed  CAS  Google Scholar 

  • Piccolino, M., Neyton, J., Witkovsky, P. and Gerschenfeld, H.M. (1982) 7-Aminobutyric acid antagonists decrease junctional communication between L-horizontal cells of the turtle retina. Proceedings of the National Academy of Sciences, USA ,79, 3671–5.

    Article  CAS  Google Scholar 

  • Piccolino, M., Witkovsky, P. and Trimarchi, C. (1987) Dopaminergic mechanisms underlying the reduction of electrical coupling between horizontal cells of the turtle retina induced by d-amphetamine, bicuculline and veratridine. Journal of Neuroscience, 7 ,2273–34.

    PubMed  CAS  Google Scholar 

  • Piechl, L. (1991) Catecholaminergic amacrine cells in the dog and wolf retina. Visual Neuroscience, 7, 575–87.

    Article  Google Scholar 

  • Rayborn, M.E., Sarthy, P.V., Lam, D.M.-K. and Hollyfield, J.G. (1981) The emergence, localization and maturation of neurotransmitter systems during the development of the retina in Xenopus laevis: II. Glycine. Journal of Comparative Neurology ,195, 585–93.

    Article  CAS  Google Scholar 

  • Rubim, N.M., Boatright, J.H., Gordon, J.R. and Iuvone, P.M. (1993) NMDA receptors regulate dopamine release in amphibian retina. Investigative Ophthalmology and Visual Science Supplement ,34, 1770.

    Google Scholar 

  • Ryan, M.K. and Hendrickson, A.E. (1987) Interplexiform cells in Macaque monkey retina. Experimental Eye Research ,45, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Schütte, M. and Witkovsky, P. (1991) Dopaminergic interplexiform cells and centrifugal fibers in the Xenopus laevis retina. Journal of Neurocytology ,20, 195–207.

    Article  PubMed  Google Scholar 

  • Shimoda, Y., Hidaka, S., Maehara, M. et al. (1992) Hyperpolarizing interplexiform cell of the dace retina identified physiologically and morphologically. Visual Neuroscience ,8, 193–199.

    Article  PubMed  CAS  Google Scholar 

  • Smiley, J.F. and Basinger, S.F. (1988) Somatostatin-like immunoreactivity and glycine high-affinity uptake colocalize to an interplexiform cell of the Xenopus laevis retina. Journal of Comparative Neurology ,274, 608–18.

    Article  PubMed  CAS  Google Scholar 

  • Smiley, J.F. and Basinger, S.F. (1990) Glycine stimulates calcium-independent release of [3H]-GABA from isolated retinas of Xenopus laevis. Visual Neuroscience ,4, 337–48.

    Article  PubMed  CAS  Google Scholar 

  • Smiley, J.F. and Yazulla, S. (1990) Glycinergic contacts in the outer plexiform layer of the Xenopus laevis retina characterized by antibodies to glycine, GABA and glycine receptors. Journal of Comparative Neurology ,299, 375–88.

    Article  PubMed  CAS  Google Scholar 

  • Stone, S. and Witkovsky, P. (1984) The actions of 7-aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina. Journal of Physiology ,353, 249–64.

    PubMed  CAS  Google Scholar 

  • Sugawara, K. and Negishi, K. (1973) Effects of some amino acids on horizontal cell membrane potential in the isolated carp retina. Vision Research ,13, 977–81.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, E.S. (1988) Dopaminergic neurons in the cat retina. American Journal of Optometry and Physiological Optics ,65, 331–6.

    Article  PubMed  CAS  Google Scholar 

  • Teranishi, T., Negishi, K. and Kato, S. (1984) Regulatory effects of dopamine on spatial properties of horizontal cells in carp retina. Journal of Neuroscience ,4, 1271–80.

    PubMed  CAS  Google Scholar 

  • Teranishi, T., Negishi, K. and Kato, S. (1987) Functional and morphological correlates of amacrine cells in carp retina. Neuroscience ,20, 935–50.

    Article  PubMed  CAS  Google Scholar 

  • Tornquist, K., Uddman, R., Sundler, F. and Ehinger, B. (1982) Somatostatin and VIP neurons in the retina of different species, Histochemistry, 76 ,137–52.

    Article  Google Scholar 

  • Umino, O., Lee, Y. and Dowling, J.E. (1991) Effects of light stimuli on the release of dopamine from interplexiform cells in the white perch retina. Visual Neuroscience, 7 ,451–8.

    Article  PubMed  CAS  Google Scholar 

  • Vaney, D.I. (1990) The mosaic of amacrine cells in the mammalian retina. Progress in Retinal Research, 9 ,49–100.

    Article  CAS  Google Scholar 

  • Van Haesendonck, E., Marc, R.E. and Missotten, L. (1993) New aspects of dopaminergic inter plexiform cell organization in the goldfish retina. Journal of Comparative Neurology ,333, 503–18.

    Article  PubMed  Google Scholar 

  • Voight, T. and Wässle, H. (1987) Dopaminergic innervation of AII amacrine cells in mammalian retina. Journal of Neuroscience, 7 ,4115–28.

    Google Scholar 

  • Wagner, H-J. (1976) Patterns of Golgi-impregnated neurons in a predator-type fish retina, in Neural Principles in Vision (eds F. Zettler and R. Wieler), Springer-Verlag, Berlin, pp. 7–25.

    Chapter  Google Scholar 

  • Wagner, H-J. and Behrens, U.D. (1993) Microanatomy of the dopaminergic systems in the rainbow trout retina. Vision Research ,33, 1345–58.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, H-J. and Djamgoz, M.B.A. (1993) Spin-ules: a case for retinal synaptic plasticity. Trends in Neuroscience ,16, 201–6.

    Article  CAS  Google Scholar 

  • Wagner, H-J. and Wülle, I. (1990) Dopaminergic interplexiform cells contact photoreceptor terminals in catfish retina. Cell Tissue Research ,261, 359–65.

    Article  Google Scholar 

  • Wagner, H-J. and Wülle, I. (1992) Contacts of dopaminergic interplexiform cells in the outer retina of the blue acara. Visual Neuroscience, 9 ,325–33.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, H-J., Behrens, U.D., Zaunreiter, M. and Douglas, R.H. (1992) The circadian component of spinule dynamics in teleost horizontal cells is dependent on the dopaminergic system. Visual Neuroscience, 9 ,345–51.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, H-J., Frölich, E., Negishi, K. and Miki, N. (1994) Differentiation of dopaminergic cells in fish retinae: only cone containing retinae have interplexiform cells with extensive telodendria in the outer plexiform layer. Investigative Ophthalmology and Visual Science Supplement ,35, 512.

    Google Scholar 

  • Wässle, H. and Chun, M.H. (1988) Dopaminergic and indoleamine-accumulating amacrine cells express GABA-like immunoreactivity in the cat retina. Journal of Neuroscience ,8, 3383–94.

    PubMed  Google Scholar 

  • Watt, C.B. and Florack, V.J. (1992) A double-label analysis demonstrating the non-coexistence of tyrosine hydroxylase-like and GABA-like immunoreactivities in amacrine cells of the larval tiger salamander retina. Neuroscience Letters ,148, 47–50.

    Article  PubMed  CAS  Google Scholar 

  • Werblin, F.S. (1977) Regenerative amacrine cell depolarization and formation of on-off ganglion cell responses. Journal of Physiology ,264, 767–85.

    PubMed  CAS  Google Scholar 

  • Witkovsky, P. and Dearry, A. (1991) Functional roles of dopamine in the vertebrate retina. Progress in Retinal Research ,11, 247–92.

    Article  CAS  Google Scholar 

  • Witkovsky, P. and Schiitte, M. (1991) The organization of dopaminergic neurons in vertebrate retinas. Visual Neuroscience ,7, 113–24.

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky, P., Nicholson, C, Rice, M.E. et al. (1993) Extracellular dopamine concentration in the retina of the clawed frog Xenopus laevis. Proceedings of the National Academy of Sciences, USA ,90, 5667–71.

    Article  CAS  Google Scholar 

  • Wu, S.M. and Dowling, J.E. (1990) Effects of GABA and glycine on the distal cells of the cyprinid retina. Brain Research ,199, 401–14.

    Article  Google Scholar 

  • Wülle, I. and Wagner, H-J. (1990) GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurons of various vertebrates. Journal of Comparative Neurology ,296, 173–8.

    Article  PubMed  Google Scholar 

  • Yamada, M., Shigematsu, Y., Umetani, Y. and Saito, T. (1992) Dopamine decreases receptive field size of rod-driven horizontal cells in carp retina. Vision Research ,32, 1801–7.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C.-Y. and Yazulla, S. (1988) Light microscopic localization of putative glycinergic neurons in the larval tiger salamander by immunocytochemical and autoradiographical methods. Journal of Comparative Neurology ,272, 343–57.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.-L., Tornqvist, K. and Dowling, J.E. (1988a) Modulation of cone horizontal cell activity in the teleost fish retina. I. Effects of prolonged darkness and background illumination on light responsiveness. Journal of Neuroscience ,8, 2259–68.

    PubMed  CAS  Google Scholar 

  • Yang, X.-L., Tornqvist, K. and Dowling, J.E. (1988b) Modulation of cone horizontal cell activity in the teleost fish retina. II. Role of interplexiform cells and dopamine in regulating light responsiveness. Journal of Neuroscience ,8, 2259–68.

    PubMed  CAS  Google Scholar 

  • Yazulla, S. and Studholme, K. (1991) Glycinergic interplexiform cells make synaptic contact with amacrine cell bodies in goldfish retina. Journal of Comparative Neurology ,310, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla, S. and Zucker, C.L. (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina. Visual Neuroscience ,1, 13–29.

    Article  PubMed  CAS  Google Scholar 

  • Zaunreiter, M. and Wagner, H-J. (1991) Dopaminergic interplexiform cells contact photoreceptor terminals in teleosts. Investigative Ophthalmology and Visual Science Supplement ,32, 1260.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marc, R.E. (1995). Interplexiform cell connectivity in the outer retina. In: Djamgoz, M.B.A., Archer, S.N., Vallerga, S. (eds) Neurobiology and Clinical Aspects of the Outer Retina. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0533-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0533-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4237-6

  • Online ISBN: 978-94-011-0533-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics