Skip to main content

Functional architecture of mammalian outer retina and bipolar cells

  • Chapter
Neurobiology and Clinical Aspects of the Outer Retina

Abstract

‘Function’ in the outer retina has mainly been studied by recording in situ from single neurons. In lower vertebrates this approach to bipolar cells has been extremely fruitful (e.g. Chapter 12), but in mammals bipolar cell recordings can be counted on the fingers of (at most) two hands (Nelson and Kolb, 1983; Dacheux and Raviola, 1986). And, considering that the recordings include both rod bipolar and multiple types of cone bipolar cell (Chapter 11), the electrophysiological data regarding mammalian bipolar neurons are thinly spread. On the other hand, in lower vertebrates information essential to understanding the contribution of the outer retina to image processing (such as optics, sampling frequencies, and synaptic circuitry) hardly exists. So, in lower vertebrates how single neuron responses in the outer retina contribute to vision remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agardh, E., Ehinger, B. and Wu, J.-Y. (1987) GABA and GAD-like immunoreactivity in the primate retina. Histochemistry ,86, 485–90.

    Article  PubMed  CAS  Google Scholar 

  • Ahnelt, P. and Pflug, R. (1986) Telodendrial contacts between foveolar cone pedicles in the human retina. Experimentia ,42, 298–300.

    Article  CAS  Google Scholar 

  • Ashmore, J.F. and Copenhagen, D. (1983) An analysis of transmission from cones to hyperpolarizing bipolar cells in the retina of the turtle. Journal of Physiology ,340, 569–97.

    PubMed  CAS  Google Scholar 

  • Attwell, D., Wilson, M. and Wu, S.M. (1985) The effect of light on the spread of signals through the rod network of the salamander retina. Brain Research ,343, 79–38.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, H.B. (1961) Three points about lateral inhibition, in Sensory Communication (ed. W.A. Rosenblith), MIT Press/John Wiley, New York, pp. 782–6.

    Google Scholar 

  • Barlow, H.B., Levick, W.R. and Yoon, M. (1971) Responses to single quanta of light in retinal ganglion cells of the cat. Vision Research ,S3, 87–101.

    Article  Google Scholar 

  • Baylor, D.A., Fuortes, M.G.F. and O’Bryan, P.M. (1971) Receptive fields of cones in the retina of the turtle. Journal of Physiology ,214, 265–94.

    PubMed  CAS  Google Scholar 

  • Baylor, D.A., Nunn, B.J. and Schnapf, J.L. (1984) The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. Journal of Physiology ,357, 575–607.

    PubMed  CAS  Google Scholar 

  • Bloomfield, S.A. and Miller, R.F. (1982) A physiological and morphological study of the horizontal cell types of the rabbit retina. Journal of Comparative Neurology ,208, 288–303.

    Article  PubMed  CAS  Google Scholar 

  • Bolz, J., Thier, P., Voight, T. and Wässle, H. (1985) Action and localization of glycine and taurine in the cat retina. Journal of Physiology ,362, 395–413.

    PubMed  CAS  Google Scholar 

  • Boos, R., Schneider, H. and Wässle, H. (1993) Voltage-and transmitter-gated currents of AII-amacrine cells in a slice preparation of the rat retina. Journal of Neuroscience ,13, 2874–88.

    PubMed  CAS  Google Scholar 

  • Borges, S. and Wilson, M. (1987) Structure of the receptive fields of bipolar cells in the salamander retina. Journal of Neurophysiology ,58, 1275–91.

    PubMed  CAS  Google Scholar 

  • Boycott, B.B. and Kolb, H. (1973) The horizontal cells of the Rhesus monkey retina. Journal of Comparative Neurology ,148, 115–39.

    Article  PubMed  CAS  Google Scholar 

  • Boycott, B.B. and Wässle,\ H. (1991) Morphological classification of bipolar cells of the primate retina. European Journal of Neuroscience ,3, 1069–88.

    Article  PubMed  Google Scholar 

  • Boycott, B.B., Peichl, L. and Wässle, H. (1978) Morphological types of horizontal cell in the retina of the domestic cat. Proceedings of the Royal Society of London B ,203, 229–45.

    Article  CAS  Google Scholar 

  • Boycott, B.B., Hopkins, J.M. and Sperling, H.G. (1987) Cone connections of the horizontal cells of the rhesus monkey’s retina. Proceedings of the Royal Society of London B ,229, 345–79.

    Article  CAS  Google Scholar 

  • Chen, B., Makous, W. and Williams, D.R. (1993) Serial spatial filters in vision. Vision Research ,33, 41:3–27.

    Google Scholar 

  • Chun, M.H., Han, S.H., Chung, J.W. and Wässle, H. (1993) Electron-microscopic analysis of the rod pathway of the rat retina. Journal of Comparative Neurology ,332, 421–32.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, B.G., Harding, T.H. and Tulunay-Keesey, U. (1979) Visual resolution and receptive-field size: examination of two kinds of cat retinal ganglion cell. Science ,205, 1015–17.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, A.I. (1965) Some electron microscopic observations on inter-receptor contacts in the human and macaque retinae. Journal of Anatomy ,99, 595–610.

    PubMed  CAS  Google Scholar 

  • Cohen, E. and Sterling, P. (1986) Accumulation of [3H] glycine by cone bipolar neurons in the cat retina. Journal of Comparative Neurology ,250, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, E. and Sterling, P. (1990a). Demonstration of cell types among cone bipolar neurons of cat retina. Philosophical Transactions of the Royal Society of London B ,330, 305–21.

    Article  CAS  Google Scholar 

  • Cohen, E. and Sterling, P. (1990b) Convergence and divergence of cones onto bipolar cells in the central area of cat retina. Philosophical Transactions of the Royal Society of London B ,330, 323–8.

    Article  CAS  Google Scholar 

  • Cohen, E. and Sterling, P. (1991) Microcircuitry related to the receptive field center of the on-beta ganglion cell. Journal of Neurophysiology ,65, 352–9.

    PubMed  CAS  Google Scholar 

  • Cohen, E. and Sterling, P. (1992) Parallel circuits from cones to the on-beta ganglion cell. European Journal of Neuroscience ,4, 506–20.

    Article  PubMed  Google Scholar 

  • Dacheux, R.F. and Raviola, E. (1986) The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. Journal of Neuroscience ,6, 331–45.

    PubMed  CAS  Google Scholar 

  • Dolan, R.P. and Schiller, P.H. (1989) Evidence for only depolarizing rod bipolar cells in the primate retina. Visual Neuroscience, 2 ,421–4.

    Article  PubMed  CAS  Google Scholar 

  • Famiglietti, E.V. Jr (1981) Functional architecture of cone bipolar cells in mammalian retina. Vision Research ,21, 1559–63.

    Article  PubMed  Google Scholar 

  • Freed, M.A. (1992) GABAergic circuits in the mammalian retina. Progress in Brain Research ,20, 107–31.

    Article  Google Scholar 

  • Freed, M.A. and Nelson, R. (1994) Conductances evoked by light in the ON-p ganglion cell of the cat retina. Visual Neuroscience ,11, 261–9.

    Article  PubMed  CAS  Google Scholar 

  • Freed, M.A. and Sterling, P. (1988) The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. Journal of Neuroscience ,8, 2303–20.

    PubMed  CAS  Google Scholar 

  • Freed, M.A., Smith, R.G. and Sterling, P. (1987) Functional architecture of the rod bipolar neuron in cat retina. Journal of Comparative Neurology ,266, 445–55.

    Article  PubMed  CAS  Google Scholar 

  • Greferath, U., Müller, F., Wässle, H. et al. (1993) Localization of GABAA receptors in the rat retina. Visual Neuroscience ,10, 551–61.

    Article  PubMed  CAS  Google Scholar 

  • Grigorenko, E.V. and Yeh, H.H. (1994) Expression profiling of GABAA receptor β-subunits in the rat retina. Visual Neuroscience ,11, 379–87.

    Article  PubMed  CAS  Google Scholar 

  • Gnünert, U. and Martin, P.R. (1991). Rod bipolar cells in the Macaque monkey retina: immunoreactivity and connectivity. Journal of Neuroscience ,11, 2742–58.

    Google Scholar 

  • Grünert, U. and Wässle, H. (1990) GABA-like immunoreactivity in the macaque monkey retina: a light and electron microscopic study. Journal of Comparative Neurology ,297, 509–24.

    Article  PubMed  Google Scholar 

  • Hampson, E.C., Vaney, D.I. and Weiler, R. (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. Journal of Neuroscience ,12, 4911–22.

    PubMed  CAS  Google Scholar 

  • Hare, W.A. and Owen, W.G. (1990) Spatial organization of the biopolar cell’s receptive field in the retina of the tiger salamander. Journal of Physiology ,421, 223–45.

    PubMed  CAS  Google Scholar 

  • Hirsch, J. and Curcio, C. (1989) The spatial resolution capacity of human foveal retina. Vision Research ,29, 1095–101.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H. (1977) The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations. Journal of Neurocytology ,6, 131–53.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., Nelson, R. and Mariani, A. (1981) Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vision Research ,21, 1081–114.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., Linberg, K.A. and Fisher, S.K. (1992) Neurons of the human retina: a Golgi study. Journal of Comparative Neurology ,318, 147–87.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler, S.W. (1953) Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology ,16, 37–68.

    PubMed  CAS  Google Scholar 

  • Lamb, T.D. and Pugh, E.N. Jr (1992) G-protein cascades: gain and kinetics. Trends in Neuroscience ,15, 291–8.

    Article  CAS  Google Scholar 

  • Lamb, T.D. and Simon, E.J. (1976) The relation between intercellular coupling and electrical noise in turtle photoreceptors. Journal of Physiology ,263, 257–86.

    PubMed  CAS  Google Scholar 

  • Lankheet, M.J.M., van Wezel, R.J.A. and van de Grind, W.A. (1991) Effects of background illumination on cat horizontal cell responses. Vision Research ,31, 919–32.

    Article  PubMed  CAS  Google Scholar 

  • Lasansky, A. (1973) Organization of the outer synaptic layer in the retina of the larval tiger salamander. Philosophical Transactions of the Royal Society of London B ,265, 471–89.

    Article  CAS  Google Scholar 

  • Lasansky, A. (1978) Contacts between receptors and electrophysiologically identified neurones in the retina of the larval tiger salamander. Journal of Physiology ,285, 531–42.

    PubMed  CAS  Google Scholar 

  • Laughlin, S.B. (1994) Matching coding, circuits, cells, and molecules to signals: general principles of retinal design in the fly’s eye. Progress in Retinal and Eye Research ,13, 165–96.

    Article  CAS  Google Scholar 

  • Levitan, B. and Buchsbaum, G. (1993) Signal sampling and propagation through multiple cell layers in the retina: modeling and analysis with multirate filtering. Journal of the Optical Society of America A ,10, 1463–79.

    Article  CAS  Google Scholar 

  • Linberg, K.A. and Fisher, S.K. (1988) Ultrastructural evidence that horizontal cell axon terminals are presynaptic in the human retina. Journal of Comparative Neurology ,268, 281–97.

    Article  PubMed  CAS  Google Scholar 

  • Linsenmeier, R.A., Frishman, L.J., Jakiela, H.G. and Enroth-Cugell, C. (1982) Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements. Vision Research ,22, 1173–83.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod, D.I.A., Chen, B. and Crognale, M. (1989) Spatial organization of sensitivity regulation in rod vision. Vision Research ,29, 965–78.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod, D.I.A., Williams, D.R. and Makous, W. (1992) A visual nonlinearity fed by single cones. Vision Research ,32, 347–63.

    Article  PubMed  CAS  Google Scholar 

  • Mangel, S.C. (1991) Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. Journal of Physiology ,442, 211–34.

    PubMed  CAS  Google Scholar 

  • Mariani, A. P. (1986) Photoreceptors of the larval tiger salamander retina. Proceedings of the Royal Society of London B ,227, 483–92.

    Article  CAS  Google Scholar 

  • Massey, S.C. (1990) Cell types using glutamate as a neurotransmitter in the vertebrate retina, in Progress in Retinal Research ,vol. 9 (eds N.N. Osborne and G. Chader), Pergamon Press, London, pp.399–425.

    Google Scholar 

  • Mastronarde, D.N. (1983) Correlated firing of cat retinal ganglion cells. II. Responses of X-and Y-cells to single quantal events. Journal of Neurophysiology ,49, 325–49.

    PubMed  CAS  Google Scholar 

  • McGuire, B.A., Stevens, J.K. and Sterling, P. (1984) Microcircuitry of bipolar cells in cat retina. Journal of Neuroscience ,4, 2920–38.

    PubMed  CAS  Google Scholar 

  • McGuire, B.A., Stevens, J.K. and Sterling, P. (1986) Microcircuitry of beta ganglion cells in cat retina. Journal of Neuroscience ,6, 907–18.

    PubMed  CAS  Google Scholar 

  • Mills, S.L. and Massey, S.C. (1992) Morphology of bipolar cells labeled by DAPI in the rabbit retina. Journal of Comparative Neurology ,321, 133–49.

    Article  PubMed  CAS  Google Scholar 

  • Missotten, L. (1965) The Ultrastructure of the Human Retina. Editions Arscia, Brussels.

    Google Scholar 

  • Müller, B. and Peichl, L. (1993) Horizontal cells in the cone-dominated tree shrew retina: morphology, photoreceptor contacts, and topographical distribution. Journal of Neuroscience ,13, 3628–46.

    PubMed  Google Scholar 

  • Müller, F., Wässle, H. and Voigt, T. (1988) Pharmacological modulation of the rod pathway in the cat retina. Journal of Neurophysiology ,59, 1657–72.

    PubMed  Google Scholar 

  • Nelson, P., Famiglietti, E.V. and Kolb, H. (1978) Intracellular staining reveals different levels of stratification for On-and Off-center ganglion cells of the cat retina. Journal of Neurophysiology ,41, 472–483.

    PubMed  CAS  Google Scholar 

  • Nelson, R. (1977) Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. Journal of Comparative Neurology ,172, 109–36.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R. and Kolb, H. (1983). Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Research ,23, 1183–95.

    Article  PubMed  CAS  Google Scholar 

  • Peichl, L. and González-Soriano, J. (1993) Unexpected presence of neurofilaments in axon-bearing horizontal cells of the mammalian retina. Journal of Neuroscience ,13, 4091–100.

    PubMed  CAS  Google Scholar 

  • Piccolino, M., Neyton, J. and Gerschenfeld, H. (1981) Center-surround antagonistic organization in small-field luminosity horizontal cells of turtle retina. Journal of Neuroscience ,45, 363–375.

    CAS  Google Scholar 

  • Pourcho, R.G. and Goebel, D.J. (1987a) Visualization of endogenous glycine in cat retina: an immunocytochemical study with Fab fragments. Journal of Neuroscience, 7 ,1189–97.

    PubMed  CAS  Google Scholar 

  • Pourcho, R.G. and Goebel, D.J. (1987b) A combined Golgi and autoradiographic study of 3H-glycine-accumulating cone bipolar cells in the cat retina. Journal of Neuroscience, 7 1178–88.

    PubMed  CAS  Google Scholar 

  • Pourcho, R.G. and Owczarzak, M.T. (1989) Distribution of GABA immunoreactivity in the cat retina: a light-and electron-microscopic study. Visual Neuroscience ,2, 425–435.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R., Buchsbaum, G. and Sterling, P. (1994) Rate of quantal transmitter release at the mammalian rod synapse. Biophysical Journal ,67, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R., Harkins, A., Buchsbaum, G. and Sterling,P. (1995) Mammalian rod terminal architecture of a binary synapse Neuron ,14, March.

    Google Scholar 

  • Raviola, E. and Dacheux, R.F. (1983) Variations in structure and response properties of horizontal cells in the retina of the rabbit. Vision Research ,23, 1221–7.

    Article  PubMed  CAS  Google Scholar 

  • Raviola, E. and Dacheux, R.F. (1990) Axonless horizontal cells of the rabbit retina: synaptic connections and origin of the rod aftereffect. Journal of Neurocytology ,19, 731–6.

    Article  PubMed  CAS  Google Scholar 

  • Raviola, E. and Gilula, N.B. (1973) Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Sciences USA ,70, 1677–81.

    Article  CAS  Google Scholar 

  • Raviola, E. and Raviola, G. (1982) Structure of the synaptic membranes in the inner plexiform layer of the retina: a freeze-fracture study in monkeys and rabbits. Journal of Comparative Neurology ,209, 233–248.

    Article  PubMed  CAS  Google Scholar 

  • Robson, J.G. and Enroth-Cugell, C.E. (1978) Light distribution in the cat’s retinal image. Vision Research ,18, 159–73.

    Article  PubMed  CAS  Google Scholar 

  • Rodieck, R.W. (1973) The Vertebrate Retina: Principles of Structure and Function. W.H. Freeman, San Francisco, CA.

    Google Scholar 

  • Rodieck, R.W. and Brening, R.K. (1983) Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. Brain Behavior and Evolution ,23, 121–64.

    Article  CAS  Google Scholar 

  • Rose, A. (1973) Vision: Human and Electronic. Plenum Press, New York.

    Google Scholar 

  • Saito, T. and Kujiraoka, T. (1988) Characteristics of bipolar-bipolar coupling in the carp retina. Journal of General Physiology ,91, 275–287.

    Article  PubMed  CAS  Google Scholar 

  • Saito, T., Kujiraoka, T., Yonaha, T. and Chino, Y.(1985) Reexamination of photoreceptor-bipolar connectivity patterns in carp retina: HRP-EM and Golgi-EM studies. Journal of Comparative Neurology ,236, 141–60.

    Article  PubMed  CAS  Google Scholar 

  • Sarthy, P.V. and Fu, M. (1989). Localization of L-glutamic acid decarboxylase mRNA in cat retinal horizontal cells by in situ hybridization. Journal of Comparative Neurology ,288, 593– 600.

    Article  PubMed  CAS  Google Scholar 

  • Schnapf, J.L., Nunn, B.J., Meister, M. and Baylor, D.A. (1990) Visual transduction in cones of the monkey Macaca fascicularis. Journal of Physiology ,427, 681–713.

    PubMed  CAS  Google Scholar 

  • Sieving, P.A., Frishman, L.J. and Steinberg, R.H.(1986) Scotopic threshold response of proximal retina in cat. Journal of Neurophysiology ,56, 1049–61.

    PubMed  CAS  Google Scholar 

  • Smith, R.G. (1992) NeuronC: a computational language for investigating functional architecture of neural circuits. Journal of Neuroscience Methods ,43, 83–108.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.G. (1995) Simulation of an anatomically-defined local circuit: the cone-horizontal cell network in cat retina. Visual Neuroscience (in press).

    Google Scholar 

  • Smith, R.G. and Sterling, P. (1990) Cone receptive field in cat retina computed from micro-circuitry. Visual Neuroscience ,5, 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.G. and Vardi, N. (1993). Functional regenerative membrane and coupling in the AII amacrine cell of cat retina. Neuroscience Abstracts ,19, 1415 (Abstr.).

    Google Scholar 

  • Smith, R.G. and Vardi, N. (1995) Simulation of the AII amacrine cell of mammalian retina: functional consequences of electrical coupling and regenerative membrane properties. Journal of Neuroscience (in press).

    Google Scholar 

  • Smith, R.G., Freed, M.A. and Sterling, P. (1986) Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. Journal of Neuroscience ,6, 3505–17.

    PubMed  CAS  Google Scholar 

  • Srinivasan, M.V., Laughlin, S.B. and Dubs, A. (1982) Predictive coding: a fresh view of inhibition in the retina. Proceedings of the Royal Society of London B ,216, 427–59.

    Article  CAS  Google Scholar 

  • Steinberg, R.H. (1969) Rod and cone contributions to s-potenials from the cat retina. Vision Research ,9, 1319–29.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, R.H., Reid, M. and Lacy, P.L. (1973) The distribution of rods and cones in the retina of the cat (Felis domesticus). Journal of Comparative Neurology ,148, 229–48.

    Article  PubMed  CAS  Google Scholar 

  • Sterling, P. and Harkins, A.B. (1990) Ultrastruc-ture of the cone pedicle in cat retina. Investigative Ophthalmology and Visual Science ,31, 177.

    Google Scholar 

  • Sterling, P., Cohen, E., Freed, M.A. and Smith, R.G. (1987) Microcircuitry of the on-beta ganglion cell in daylight, twilight and starlight. Neuroscience Research ,(Suppl)6, 5269–85.

    Google Scholar 

  • Sterling, P., Freed, M.A. and Smith, R.G. (1988) Functional architecture of the rod and cone circuits to the on-beta ganglion cell. Journal of Neuroscience ,8, 623–42.

    PubMed  CAS  Google Scholar 

  • Sterling, P., Cohen, E., Smith, R.G. and Tsukamoto, Y. (1992) Retinal circuits for daylight: why ballplayers don’t wear shades, in Analysis and Modeling of Neural Systems (ed. F.H. Eeck-man), Kluwer Academic Publishers, Dor-dreeht, pp.143–62.

    Google Scholar 

  • Stockman, A., Sharpe, L.T., Zrenner, E. and Nordby, K. (1991) Slow and fast pathways in the human rod visual system: electrophysiology and psychophysics. Journal of the Optical Society of America ,8, 1657–65.

    PubMed  CAS  Google Scholar 

  • Strettoi, E., Dacheux, R.F. and Raviola, E. (1990) Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. Journal of Comparative Neurology ,295, 449–66.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, T., Nakatani, K. and Yau, K.-W. (1989) Light adaptation in cat retinal rods. Science ,245, 755–8.

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto, Y., Smith, R.G. and Sterling, P. (1990) Collective coding of correlated cone signals in the retinal ganglion cell. Proceedings of the National Academy of Sciences USA ,87, 1860–4.

    Article  CAS  Google Scholar 

  • Tsukamoto, Y., Masarachia, P., Schein, S.J. and Sterling, P. (1992) Gap junctions between the pedicles of macaque foveal cones. Vision Research ,32, 1809–15.

    Article  PubMed  CAS  Google Scholar 

  • van Hateren, J.H. (1992) Theoretical predictions of spatiotemporal receptive fields of fly LMCs and experimental validation. Journal of Comparative Physiology ,A171, 157–70.

    Google Scholar 

  • Vaney, D.I. (1993) The coupling pattern of axon-bearing horizontal cells in the mammalian retina. Proceedings of the Royal Society of London B ,252, 93–101.

    Article  CAS  Google Scholar 

  • Vaney, D.I., Young, H.M. and Gynther, I.C. (1991) The rod circuit in the rabbit retina. Visual Neuroscience, 7 ,141–54.

    Article  PubMed  CAS  Google Scholar 

  • Vardi, N. and Auerbach, P. (1994) Two forms of glutamic acid decarboxylase localize differently in cat retinal neurons. Journal of Comparative Neurology ,351, 374–84.

    Article  Google Scholar 

  • Vardi, N. and Sterling, P. (1994) Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina. Vision Research ,34, 1235–46.

    Article  PubMed  CAS  Google Scholar 

  • Vardi, N., Masarachia, P. and Sterling, P. (1992) Immunoreactivity to GABAA receptor in the outer plexiform layer of the cat retina. Journal of Comparative Neurology ,320, 394–7.

    Article  PubMed  CAS  Google Scholar 

  • Vardi, N., Matesic, D.F., Manning, D.R. et al. (1993) Identification of a G-protein in depolarizing bipolar cells. Visual Neuroscience ,10, 473–8.

    Article  PubMed  CAS  Google Scholar 

  • Vardi, N., Kaufman, D.L. and Sterling, P. (1994) Horizontal cells in cat and monkey retina express different isoforms of glutamic acid decarboxylase. Visual Neuroscience ,11, 135–42.

    Article  PubMed  CAS  Google Scholar 

  • von Gersdorff, H. and Matthews, G. (1994) Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature ,367, 735–9.

    Article  Google Scholar 

  • Wässle, H. (1971) Optical quality of the cat eye. Vision Research ,11, 995–1006.

    Article  PubMed  Google Scholar 

  • Wässle, H., Boycott, B.B. (1991) Functional architecture of the mammalian retina. Physiological Reviews ,71, 447–80.

    PubMed  Google Scholar 

  • Wässle, H., and Chun, M.H. (1989) GABA-like immunoreactivity in the cat retina: Light microscopy. Journal of Comparative Neurology ,279, 43– 54.

    Article  PubMed  Google Scholar 

  • Wässle, H., and Riemann, H.J. (1978) The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society of London B ,200, 441–61.

    Article  Google Scholar 

  • Wässle, H., Schäfer-Trenkler, I. and Voigt, T. (1986) Analysis of a glyanergic inhibitory pathway in the cat retina. Journal of Neuroscience ,6, 594–604.

    PubMed  Google Scholar 

  • Wässle, H. and Boycott, B.B. and Röhrenbeck, J. (1989) Horizontal cells in the monkey retina: cone connections and dendritic network. European Journal of Neuroscience ,1, 421–35.

    Article  PubMed  Google Scholar 

  • West, R.W. (1976) Light and electron microscopy of the ground squirrel retina: functional considerations. Journal of Comparative Neurology ,168, 355–78.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D.R. (1992) Photoreceptor sampling and aliasing in human vision, in Tutorials in Optics (ed. D.T. Moore), Optical Society of America, Rochester, NY, pp. 15–27.

    Google Scholar 

  • Williams, R.W., Cavada, C. and Reinoso-Suárez, F. (1993) Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat. Journal of Neuroscience ,13, 208–228.

    PubMed  CAS  Google Scholar 

  • Wu, S.M. (1994) Synaptic transmission in the outer retina. Annual Review of Physiology ,56,

    Google Scholar 

  • Young, H.M. and Vaney, D.I. (1991) Rod-signal interneurons in the rabbit retina. 1. Rod bipolar cells. Journal of Comparative Neurology ,310, 139–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sterling, P., Smith, R.G., Rao, R., Vardi, N. (1995). Functional architecture of mammalian outer retina and bipolar cells. In: Djamgoz, M.B.A., Archer, S.N., Vallerga, S. (eds) Neurobiology and Clinical Aspects of the Outer Retina. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0533-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0533-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4237-6

  • Online ISBN: 978-94-011-0533-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics